
Abstract

Dependency derivation is the search for combinations of variables (or states
of variables) in a database, that co-occur unexpectedly often. In Bayesian depen-
dency derivation, indications are ranked primarily by their estimated strengths,
but an adjustment is made to account for uncertainty when data is scarce. This
reduces the risk of highlighting spurious associations.

This report presents refined methods for IC analysis—one method for Bayesian
dependency derivation. The disproportionality measure in IC analysis is the In-
formation Component (IC) [BLE+98]. It relates the observed joint frequency of
two particular states of two different variables to the frequency expected under
the assumption of independence.

In the current implementation of IC analysis, estimates for the lower 95%
credibility interval limit are derived based on a normal approximation to the
posterior IC distribution [OLBL00]. In this report, the validity of these approx-
imations is examined through Monte Carlo simulation. Monte Carlo simulation
is also proposed and used as a general tool to study the IC distribution.

For accurate lower credibility interval limit derivation over the entire domain
of possible parameter values, two Monte Carlo based approaches are proposed:
brute force simulation and a tabular method. These methods vary in execution
time and the ranges in which they give accurate results. The optimal com-
bination and implementation of the known approaches is highly dependent on
characteristics of the database of interest.

Furthermore, this report shows that for a certain choice of non-informative
priors the multinomial and the Poisson data models yield equivalent posterior
IC distributions and that Monte Carlo simulation under these circumstances is
equivalent to the Bayesian bootstrap.

Relevant aspects of the multiple comparisons issue and problems related to
stratification and confounding variables are also discussed.
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Chapter 1

Introduction

This is the report of a Master of Science thesis project in Mathematical Statis-
tics, that will conclude a degree in Engineering Physics, at Chalmers University
of Technology.

The M.Sc. thesis project has been carried out as part of a joint effort be-
tween the research and development company Neurologic in Stockholm and the
WHO Collaborating Centre for International Drug Monitoring in Uppsala—also
referred to as the Uppsala Monitoring Centre.

The formal examiner of this thesis is Associate Professor Serik Sagitov at
the Mathematical statistics department of Chalmers University of Technology.
Roland Orre at Neurologic and Stockholm University has been the formal su-
pervisor.

1.1 Background: ADR signal generation in the
WHO database

A database held by the Uppsala Monitoring Centre (UMC), in Uppsala, con-
tains more than 2.8 million spontaneous case reports of suspected adverse drug
reactions (ADR) [BLE+98]. The database is updated on a quarterly basis with
new reports from the 68 member countries of the World Health Organization
Programme for International Drug Monitoring. Each case report has 49 fields
for e.g. age, sex, ADR, suspected drug substance, concomitant medication, etc.
Few reports however carry all this information. All in all there are over 13 000
different drug substances and close to 1900 ADR terms in the database, so the
total number of possible drug/ADR combinations is in the order of 107.

The purpose of the WHO database is to enable early signaling of drug related
adverse events due to drug substances that are already introduced on the market.
This is a very important aspect of safety in medicine, since several types of
adverse reactions are difficult to identify in clinical trials—e.g rare and long-term
side effects, or side effects due to interactions between several drug substances.
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To handle today’s massive in-flow of data, a method referred to as IC anal-
ysis has been implemented on the data set, and has been in routine use since
1998 [BLE+98]. The current implementation is based on a normal approxi-
mation to the IC distribution. The aim is to automatically identify the de-
pendencies in the database that are most interesting for a closer investigation.
IC analysis is a Bayesian approach, where dependencies are ranked by their
lower 95% credibility interval limits for the ratio between the observed joint
frequency of two states, and the corresponding expected joint frequency under
an assumption of independence.

The rationale for looking at dependencies within the database rather than
deviations from what can be expected based on sales or prescription data is a
lack of reliable such data. In addition, reporting rates may vary for different
drug substances and ADR’s, in which case any comparison to external data will
be biased.

In general, it is important to remember that the case reports in the database
refer to suspected adverse drug reactions that may be due to other circumstances
such as e.g. concomitant medication, chance events or the condition for which
medication was taken in the first place [Raw88]. Consequently, the näıve rank-
ing of drug/ADR dependencies by shear numbers of reports is biased toward
highlighting combinations of the most common drug substances and ADR terms.

1.2 Aims with the thesis

This thesis has three main aims:

• To derive a method for studying the true shape of the IC distribution

• To determine the accuracy of the current normal approximation

• To propose new methods for refined credibility interval estimation, if the
current normal approximation can be proven to be inaccurate, for at least
some sets of parameters.

1.3 Outline of the thesis

This thesis is divided into four main parts:

Part I These introductory sections.

Part II Recapitulation of and reference to some of the relevant general the-
ory. Focuses especially on Bayesian statistics, Monte Carlo simulation
and pseudo-random number generation. Can be browsed through rapidly,
or skipped entirely by readers who are already familiar with these areas.

Part III Review of and reference to previous research in IC analysis, as well as
in related dependency derivation techniques. A summary of the relevant
methods and models that are known today.
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Part IV Describes and discusses the implementation of, and the results based,
on the new methods introduced in this thesis. In addition, it presents
some new conclusions about the method and models in general.

1.4 Acknowledgements

I would like to express my gratitude to the WHO Collaborating Centre for Inter-
national Drug Monitoring in Uppsala—also known as the Uppsala Monitoring
Centre—who funded this thesis project.

I would also like to thank Roland Orre who has been my formal supervisor at
Neurologic and Stockholm University, Andrew Bate who has been my contact at
the Uppsala Monitoring Centre and Serik Sagitov at the Mathematical Statistics
department of Chalmers University of Technology who has been my formal
examiner and who also taught the very relevant course in Statistical inference,
in the spring of 2002. They have provided excellent guidance and given very
valuable feedback to my work.

Finally, I would like to thank friends, family and colleagues, for their support
and encouragement.

Stockholm, December 2002,
Niklas Norén.
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Chapter 2

Review of the relevant
theory

As will be explained in Chapter 3, IC analysis is a Bayesian method, that
greatly emphasizes the posterior distribution of the statistic of interest. The
new methods proposed in this thesis, are based on Monte Carlo simulation,
which in turn relies on pseudo-random number generation. For those who are
not familiar with these areas, this chapter gives a brief general introduction. It
may be skipped in parts or in its entirety, without loss of context.

2.1 Bayesian statistics

The Bayesian approach is an integral part of IC analysis. This section gives a
brief overview of the most relevant aspects of Bayesian statistics. For a more
thorough treatment, see for example [Lee97].

2.1.1 Bayes theorem

Bayesian statistics combines observed data x and a prior probability distribution
g(θ | prior) for the parameter θ, to derive the posterior probability distribution
h(θ | x, prior) for θ. The derivation is based on Bayes theorem:

h(θ | x, prior) =
f(x | θ, prior)g(θ | prior)

f(x | prior)
∝ f(x | θ)g(θ | prior) (2.1)

The real advantage of Bayesian statistics over the classical approach, is that
it allows direct inspection of the parameter ’s probability distribution. Classical
statistics, on the other hand, generally studies the probability distribution of
data, and can only draw indirect conclusions about the parameter distribution
via the parameter estimate distribution (c.f. confidence intervals).
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The use of a prior probability distribution is both a strength and a weakness
of the Bayesian approach. On one hand, it allows prior knowledge to be incor-
porated into the analysis, something that may be particularly useful when data
is sparse and objective prior information is available. On the other hand, this
adds a degree of subjectivity to the analysis, especially when no reliable prior
information is available.

This degree of subjectivity is often criticized by statisticians that are skep-
tical to the Bayesian approach, but it is important to remember that although
they are often combined, the Bayesian and the subjectivist views are distinct [HJN89].

2.1.2 Conjugate priors

For a given class F of likelihood functions f(x | θ), the class G of prior distri-
butions g(θ) is labelled conjugate to F if the posterior distribution h(θ | x) is
also of class G. With conjugate priors, calculations and derivations of posterior
distributions are significantly simplified. It is however crucial to remember that
the most important characteristic of a prior distribution is that it adequately
describes prior knowledge (or at least prior beliefs).

These are some of the most important likelihood functions and their corre-
sponding conjugate priors:

f(x | θ) g(θ) h(θ | x)

N(µ, σ2) N(µ0, σ
2
0) N(µ0σ−2

0 +xσ−2

σ−2
0 +σ−2 , 1

σ−2
0 +σ−2 )

Bin(n, p) Be(α0, β0) Be(α0 + x, β0 + n− x)
Mn(n, p1, . . . , pk) Dir(α1, . . . , αk) Dir(α1 + x1, . . . , αk + xk)

Po(λ) Ga(α0, λ0) Ga(α0 + x, λ0 + 1)
Exp(λ) Ga(α0, λ0) Ga(α0 + 1, λ0 + x)

2.1.3 Bayesian parameter estimates

The two most common Bayesian parameter estimates are the posterior mean
estimate (p.m.e.), which is the mean of the posterior distribution, and the max-
imum à posteriori (m.a.p.) estimate, which is the value of θ for which the
posterior distribution reaches its maximum.

θ̂pme = E(Θ | x) =
∫

h(θ | x)dθ (2.2)

θ̂map = max
θ

(h(θ | x)) (2.3)

The posterior mean estimate is sometimes referred to as the Bayes estimate.
It minimizes the posterior risk (the expected cost of an erroneous estimate) for
squared error loss functions. The maximum à posteriori estimate minimizes the
posterior risk for 0-1 loss functions.
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2.1.4 Credibility intervals

Credibility intervals are the Bayesian correlate to the confidence intervals of
classical statistics. Whereas confidence intervals indicate a most probable in-
terval for data (and indirectly for parameter estimates) under the assumption
of a known parameter value, credibility intervals indicate the high probability
density region of the parameter θ, given the observed data and prior knowl-
edge [Ric95].

2.2 Monte Carlo simulation methods

This section, gives a brief review of Monte Carlo simulation methods, and in
particular of different versions of the bootstrap method.

2.2.1 Monte Carlo simulation

Even the values of seemingly simple functions of random variables may follow
probability distributions that are difficult to analyze. Over-simplified model as-
sumptions are therefore often made in order to make possible the evaluation of
non-standard distributions or statistics. For example, dubious normal approxi-
mations may be erroneously accepted because there is no known analytical way
to calculate confidence/credibility intervals for a particular estimate/parameter.
In other situations, a known model of the dependency between trials may be
ignored so that results for independent identically distributed (i.i.d.) trials will
apply.

Monte Carlo simulation is an alternative to deliberate errors. The basic
strategy is simple: draw a large number of random samples from the distri-
bution/model of interest and use the simulated distribution to make inference
about the real distribution (parameter estimates, confidence/credibility inter-
vals etc.). A smoothed version of the simulated cumulative distribution function
will tend to the true cumulative distribution function as the number of draws
tends to infinity. Thus, any conclusions about the true distribution based on
the simulated distribution will get arbitrarily accurate as the number of draws
increase.

2.2.2 Bootstrap methods

The bootstrap is a generalization of Monte Carlo simulation, that is used when
the true distribution to be simulated is unknown. With a bootstrap method,
the simulation is based on a distribution estimate inferred from data.

2.2.3 The non-parametric bootstrap

In the non-parametric bootstrap, new batches of data, the same size as the
original batch, are simulated by sampling with replacement from the original
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data batch. This corresponds to sampling with replacement from the empirical
cumulative distribution function Fn [Ric95].

The statistic of interest is calculated for each simulated batch of data, and
the simulated distribution of the statistic is studied to draw conclusions about
the distribution of the true statistic. The advantage of the non-parametric
bootstrap over the parametric bootstrap described in Section 2.2.4 is that the
non-parametric bootstrap makes no assumption about the underlying model.

Its accuracy is on the other hand difficult to evaluate since it depends both
on how well Fn approximates F (the true cumulative distribution) and on how
sensitive the investigated statistic is to variations in F [Ric95].

2.2.4 The parametric bootstrap

When particular model assumptions are motivated, a parametric version of the
bootstrap is often used. In the parametric bootstrap, an approximate cumula-
tive distribution is found by estimating from data the parameters of an assumed
model. New data batches (of the same size as the original batch) are then gener-
ated from the parameterized distribution estimate, and the statistic of interest
is calculated for each simulated batch of data.

The accuracy of the parametric bootstrap is generally rather sensitive to a
correct model choice. In addition, its accuracy depends on the accuracy of the
parameterized distribution estimate.

2.2.5 The Bayesian bootstrap

In the Bayesian bootstrap [Rub81] the original data set is resampled by assigning
a random weight to each observation in such a way that the weights follow the
n-dimensional Dirichlet distribution Dirn(1, 1, 1, 1, ...) where n is the size of the
original data set.

This assignment of random weights corresponds to the resampling of the reg-
ular bootstrap which can be equivalently described as drawing random weights
from the discrete set {0, 1

n , . . . , n
n}. The main difference between the regu-

lar and the Bayesian bootstrap is in fact in how the random weights are as-
signed [CL01]. (Although, there is of course also a difference in interpretation,
since the Bayesian bootstrap simulates the posterior parameter distribution and
the regular bootstrap simulates the parameter estimate distribution)

One advantage of the Bayesian bootstrap over the standard bootstrap is
that even though individual samples may be assigned very low weights, they
are never completely excluded from the resampled data set. This eliminates the
risk of parameter estimates that are inconsistent with the observed data (for
example p̂ = 0 given X = x > 0 in a Bernoulli experiment), typical for the
regular bootstrap.

13



2.3 Pseudo-random number generation

The area of pseudo-random number generation has been subject to extensive
research in recent years, mainly due to the increased use of simulation methods
in e.g. mathematics, physics and biology. Random numbers are of fundamen-
tal importance to Monte Carlo simulation since without proper randomization,
correct simulation is impossible.

2.3.1 Uniformly distributed pseudo-random numbers

Most computers include software for uniform random number generation, but
these numbers are not truly random. Rather, the standard pieces of software
generate sequences of pseudo-random numbers that imitate true i.i.d. random
numbers very well. These sequences often pass all statistical tests for random
sequences, but they are nevertheless generated through deterministic proce-
dures [Häg02].

Whether truly random or not though, the pseudo-random numbers of to-
day serve their purpose well, and uniform random number generation is the
foundation on which more general random number generation relies.

2.3.2 The inversion method

The inversion method is a straightforward strategy for simulation of non-uniform
random variates. It is applicable to any function that has a strictly increasing
(to avoid ambiguities) cumulative distribution function (c.d.f.) F with a known
inverse F−1.

The underlying theory is fairly simple: a random cumulative distribution
value F (X = x) is simulated by drawing a uniform random variable Y on [0, 1];
due to the 1:1 correspondence between F (X) and X (since F (X) is strictly
increasing) the uniform random variable y can be transformed to the more
general random variable x through inversion, x = F−1(y).

2.3.3 The rejection method

Often, no closed form expression for the inverse of the c.d.f. is available. The
rejection method enables random number generation from any probability den-
sity function p(x), provided that there is a constant A and an envelope function
q(x) (whose random variates should be easy to generate) so that p(x) < Aq(x)
for all x. (If p(x) is upper bounded by a constant, the uniform distribution is a
possible envelope function.)

The rejection method consists of drawing one random number ξ ∼ q and
another random number u ∼ U [0, 1]. ξ is accepted if Auq(ξ) ≤ p(ξ), and it can
be shown that ξacc ∼ p(x) [Sch81].
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Chapter 3

The IC analysis
methodology

The strategy in IC analysis is to rank dependencies in a database primarily
with respect to their indicated strengths but with an adjustment to account for
uncertainty, in order to reduce the risk of highlighting spurious associations.

3.1 The Information Component

The Information Component (IC) is defined between any two states of variables
in a database (or a similar data set). If the states of interest are X = x and
Y = y, the IC can be expressed as [KO98]:

IC = log2

P (Y = y | X = x)
P (Y = y)

(3.1)

Equivalent expressions are:

IC = log2

P (X = x | Y = y)
P (X = x)

(3.2)

and:

IC = log2

P (X = x, Y = y)
P (X = x)P (Y = y)

(3.3)

With respect to the two states of interest, there are at most four different
types of records in a database: records with none of the two states, records
with either one of the two states and records with both states. The total num-
bers of records of each type are in this report denoted: c00, c01, c10 and c11

respectively. The corresponding frequencies are denoted f00, f01, f10 and f11,
and the assumed underlying probabilities are denoted p00, p01, p10 and p11.
The marginal probabilities of the two states are denoted p1· and p·1 etc. The
annotation for the marginal counts and frequencies is equivalent.
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With this annotation, the IC is:

IC = log2

p11

p1·p·1
(3.4)

The IC was originally derived as the weight between two nodes in a Bayesian
neural network [BLE+98] and it is closely related to Mutual Information (see
Section 4.3). The sign of the IC indicates whether the joint probability of
the two states is (+) greater or (−) smaller than what is expected under the
assumption of independence between the two states, and the absolute value of
the IC indicates how strong the dependency between the two states are.

To illustrate that such a statistic may be of interest in applications other than
drug monitoring, consider the following example from market basket analysis:
the observation that milk and flour are often purchased together may be of
limited interest if this is fully explained by the fact that milk is overall very
frequently purchased. Because of the term p1·p·1 in the denominator, the IC
only highlights dependencies that are not attributable to high marginal support
alone.

A näıve IC point estimate from classical statistics is:

IC = log2

f11

f1·f·1
(3.5)

but this may be biased and does not account for uncertainty.

3.2 The Bayesian approach

Bayesian statistics is an important part of the IC analysis methodology. With a
Bayesian approach, analysis of the posterior IC distribution allows uncertainty
to be accounted for. In IC analysis, dependencies are ranked by their estimated
lower credibility interval limits (denoted ICα/2) for a given significance level α.

An alternative approach would be to rank dependencies by the proportion
of the posterior IC distribution that exceeds a certain threshold β: P (IC >
β). The ICα/2 ranking, however, has the advantage of ranking dependencies
primarily by their indicated relative strengths. As the amount of information
on a dependency increases, ICα/2 will tend to the point estimates of the IC.

In the current implementation, dependencies are ranked by IC0.025 (α =
5%).

3.3 Known data models

The database is considered to be a random sample from an underlying popula-
tion that is the true focus of the study. At least three different models can be
used to describe the distribution of records in the database.

For a review of the relevant probability distributions, please see Appendix A.
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3.3.1 The bB data model

The model on which the current implementation of IC analysis is based, con-
siders the distribution of data to be determined by three binomial distributions.
c11 ∼ bin(n, p11), c1· ∼ bin(n, p1·) and c·1 ∼ bin(n, p·1) [OLBL00]. The use of
three independent distributions does not allow covariation between the param-
eters to be accounted for.

Since the Beta distribution is the conjugate prior (see Section 2.1.2) of the
binomial distribution the prior distributions for p11, p1· and p·1 in this model
are usually selected from the Beta distribution family. The combined model is
therefore referred to as the binomial/Beta data model (or the bB data model,
for short).

3.3.2 The PG data model

The Gamma-Poisson shrinkage method [DuM99] is an approach similar in spirit
to IC analysis. As the name suggests, data is in this method assumed to follow
a Poisson distribution. In particular, the database is modelled as the sum of four
independent Poisson distributions—one for each type of report, with intensities:
λ00, λ01, λ10 and λ11. In this model, the size of the database, c·· is not assumed
to be fixed in advance, but rather to be the sum of the random counts: c00, c01,
c10 and c11.

Since the Gamma distribution is the conjugate prior (see Section 2.1.2) of
the Poisson distribution, the prior distributions for λ00, λ01, λ10 and λ11 in this
model are usually selected from the Gamma distribution family. The combined
model is therefore referred to as the Poisson/Gamma data model (or the PG
data model, for short).

3.3.3 The mD data model

The possibility to model the distribution of counts in the database by a joint
multinomial probability distribution rather than by separate binomial distribu-
tions is mentioned in [OLBL00]. It has however not been fully pursued in earlier
research.

In the multinomial model, the set of counts {c00, c01, c10, c11} is assumed to
follow a Mn(p00, p01, p10, p11, c··) distribution. This means that the marginal
probabilities of c11, c1· and c·1 follow the same distributions as in the bB data
model, but an advantage of the multinomial model is that it allows covariation
between the marginal counts to be properly accounted for.

Since the Dirichlet distribution is the conjugate prior (see Section 2.1.2) of
the multinomial distribution, the prior distribution for {p00, p01, p10, p11} in this
model is usually selected from the family of Dirichlet distributions. Again, with
respect to the marginal probabilities, this corresponds perfectly to the bB data
model, since the marginal probabilities of a joint Dirichlet distribution, are Beta
distributed. This model is referred to as the multinomial/Dirichlet data model
(or the mD data model, for short).
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3.4 Known prior distributions

IC analysis is a Bayesian method, and an important design parameter is conse-
quently the choice of prior distributions for different parameters. This section
assumes either the bB or the mD data models, and for clarity, the following
general annotation is used:

α00, α01, α10, α11 Refer specifically to the prior distribution parameters
γ00, γ01, γ10, γ11 Refer specifically to the posterior distribution parameters

Here, α1· = α11 + α10 etc. as before.
It is worth noting that in the bB and the mD data models, the posterior

parameters are equal to the sum of the counts and the prior parameters (γij =
cij + αij). The prior parameters may therefore be referred to as pseudo-counts.

In addition, the sum of the prior parameters α·· = α00 + α01 + α10 + α11 is
generally referred to as the equivalent sample size of the prior. It indicates how
important prior information is considered to be relative to real data.

3.4.1 The current prior distribution

These are the prior distributions used in the current implementation of the
method:

p1· ∼ Be(1, 1)
p·1 ∼ Be(1, 1)

p11 ∼ Be(1,
c2
··

c1·c·1
− 1)

The main motivation for this choice of prior distributions is that they indi-
cate independence for any unobserved combination, by ascertaining that [BLE+98]:

lim
c11→0

IC = 0 (3.6)

This choice may however be criticized on the basis of not being truly prior,
since the prior distribution for p11 depends directly on observations c1· and c·1
in the database.

In addition, the equivalent sample sizes of this prior have the odd charac-
teristic of being different for the different parameters (2 for p1· and p·1, and

c2
··

c1·c·1
for c11) as well as for different combinations (inversely proportional to

the product of c1· and c·1). This means that the impact of prior information
does not only vary between combinations, but also between p11 and p1· / p·1.
The equivalent sample size of the prior for p11 is generally much larger than 2,
but there is no obvious reason why more impact should be attributed to prior
information for p11 than for p1· or p·1.
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3.4.2 Other informative prior distributions

There is of course an infinite number of possible informative prior distributions,
since for example in the mD data model, all four parameters of a joint Dirichlet
prior distribution may take on any non-negative value. Different approaches to
the derivation of informative priors may however be discussed.

One strategy for derivation of sensible prior distributions is to use informa-
tion from outside of the database (e.g. sales data or demographical data).

Another possibility is to carry out empirical Bayes estimation. In empirical
Bayes estimation, an informative prior distribution is derived by fitting a prior
distribution model to the observed data (previous or current) [Mar70]. In our
application, a Beta or a Dirichlet distribution could be fitted to the frequencies
for a large number of combinations in the database that are assumed to follow
the same prior distribution. This method has been used for a statistic similar
to the IC [DP01]. Because prior distributions derived through empirical Bayes
estimation depend on data, empirical Bayes estimation is sometimes referred to
as a semi-Bayesian method.

3.4.3 Non-informative prior distributions

A common way to handle lack of prior knowledge is to use a so-called non-
informative prior. The most important aspect of a non-informative prior is that
it has minimal influence on the posterior distribution. For Beta distributions, at
least three non-informative priors have been proposed: Haldane’s prior Be(0, 0),
the arc-sine prior Be(1/2, 1/2) and the uniform prior Be(1, 1) [Lee97].

Haldane’s prior is improper (it does not integrate to 1) but it has the
advantage of yielding the most data sensitive posterior distribution [Lee97],
as well as generalizing properly to Dirichlet and Gamma prior distributions
(Dir(0, 0, . . . , 0) and Ga(0, 0) may be used). In addition, the posterior distribu-
tions will always be proper, except for combinations with non-zero counts c11

in the database.
The main drawback of non-informative priors is that the posterior IC dis-

tributions may vary largely for small changes in low counter values. Analysis
based on non-informative priors is therefore prone to highlighting spurious as-
sociations when data is sparse. A certain state of a variable could in fact be
overall so rare in a large database, that based on the marginal frequencies, it is
unlikely to occur with any one state of another variable!

3.5 Known approximations to the IC distribu-
tion

Although, the explicit posterior distributions for the constituting parameters
p11, p1· and p·1 are known, there are currently no methods for exact analytical
evaluation of the posterior IC distribution [OLBL00]. Consequently IC analysis
relies on approximate methods.
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3.5.1 The currently implemented normal approximation

In the current implementation, the derivation of credibility interval limits is
based on a normal approximation to the IC distribution. In addition to the
general approximation in replacing the true distribution by a normal distribu-
tion, the formulae for the mean and variance are approximate as well.

The current approximation of the p.m.e. is [OLBL00]:

E(IC) = E(log2 p11)− E(log2 p1·)− E(log2 p·1) ≈ (3.7)
≈ log2 E(p11)− log2 E(p1·)− log2 E(p·1) =

= log2(
γ11γ··
γ1·γ·1

)

The current approximation of the variance is [OLBL00] (to simplify annota-
tion, p̂ here denotes the p̂map, which for a Be(α, β) distribution is: α

α+β ):

V ar(IC) ≈
V ar(p11)( 1

p̂11
)2 + V ar(p1·)(−1

p̂1·
)2 + V ar(p·1)(−1

p̂·1
)2

(ln 2)2
= (3.8)

=
p̂11(1−p̂11)

(c··+1)(p̂11)2
+ p̂1·(1−p̂1·)

(c··+1)(p̂1·)2
+ p̂·1(1−p̂·1)

(c··+1)(p̂·1)2

(ln 2)2
=

=
(1−p̂11)

p̂11
+ (1−p̂1·)

p̂1·
+ (1−p̂·1)

p̂·1

(c·· + 1)(ln 2)2

Equation 3.8 is based on a Gauss approximation that disregards covariation
and combines:

z = y1 + y2 + . . . + yk ⇒ s2
z = s2

y1
+ s2

y2
+ . . . + s2

yk
(3.9)

y = log2(x) ⇒ s2
y = (

sx

x ln 2
)2 (3.10)

with the expression for the variance of p ∼ Be(α, β):

V ar(p) =
p̂(1− p̂)

α + β + 1
(3.11)

3.5.2 A refined normal approximation

More precise estimates of the mean and the variance give a more accurate nor-
mal approximation. Based on the following result for p ∼ Be(α, β) derived
in [OLBL00] the posterior mean can be calculated exactly:

E(log p) =
β

α(α + β)
− β

∞∑

i=1

1
(α + i)(α + β + i)

(3.12)

The exact expression for the variance of the IC distribution is as follows [OLBL00]:
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V ar(IC) = V ar(log p11) + V ar(log p1·) + V ar(log p·1)+ (3.13)
− 2Cov(log p11, log p1·)− 2Cov(log p11, log p·1)+
+ 2Cov(log p1·, log p·1)

The terms V ar(log p11) etc. can be evaluated exactly based on the following
expression for p ∼ Be(α, β) [OLBL00]:

V ar(log p) =
∞∑

i=0

β2 + 2αβ + 2βi

(α + i)2(α + β + i)2
(3.14)

However, no similar formulae for the covariances are known, so there is
currently no exact formula for V ar(IC).

3.5.3 A fixed marginals approximation

A different approximation is implicit in the Gamma-Poisson shrinkage method
and its successor the multi-item Gamma-Poisson shrinkage method [DuM99,
DP01]. These methods are based on a statistic similar to the IC that only
accounts for uncertainty in p11. A similar approximation to the IC distribution
would be:

ICfix = log2

p11

p̂1·map p̂·1map

(3.15)

In this approximation, the IC is simply the logarithm of a Beta distributed
random variable (p11) divided by a constant (p̂1·p̂·1). Since the incomplete Beta
function can be readily evaluated, a Newton-Raphson iterative method (see for
example [Hea97]) may be used to find the value of p11 for which the incomplete
Beta function is equal to α—this is the lower credibility interval limit for p11

(p̂11α/2). And because log(p11) is monotone in p11, the ˆICα estimate based on
the fixed marginals approximation is simply:

ˆICα = log2

p11α/2

p̂1·map p̂·1map

(3.16)
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Chapter 4

Other methods for
dependency derivation

Dependency derivation is the search for dependent variables or states of variables
in a database or another data set. It is an important matter both in traditional
statistical inference analysis, and in an emerging field of research referred to as
knowledge discovery in databases (KDD) [FPSS96].

KDD combines methods and results primarily from statistical inference the-
ory, machine learning theory and database theory. Its scope includes the collec-
tion, storage, maintenance, extraction and cleaning of data [Vea02]. One out of
several proposed definitions is: ‘the nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data’ [FPSS96].

Of the types of methods presented in this chapter, the first is a typical
statistical inference technique, and the second a typical KDD technique. The
third section describes a statistic relevant to dependency derivation, that has
its origin in Shannon’s information theory.

4.1 Tests for independence

A common statistical inference technique used to determine whether two vari-
ables are independent or not, is to construct contingency tables and perform
either a chi-squared test for independence (when all expected counts are larger
than four) or a Fisher’s exact test (when some expected counts are lower than
five).

The drawback with hypothesis testing is that it tends to emphasize precision
over relevance, i.e. slight effects with precise estimates are favored over less
certain indications of stronger effects. Often, the focus in dependency derivation
is not just the statistical significance of the dependency, but also the strength
(whether a certain combination occurs 10 or 1.1 times more often than expected
under the assumption of independence).
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4.2 Association rule analysis

Association rule analysis is a KDD method for dependency derivation.
The general form of an association rule is [HTF01]:

{X1 = x1, ..., Xm = xm} ⇒ {Y1 = y1, ..., Yn = yn} (4.1)

or with simplified notation:

A ⇒ B (4.2)

Generally speaking, the objective of Association rule analysis is to find dif-
ferent types of tendencies in the database, e.g. association rules with high con-
fidence or high lift (see below!).

The ’support’ of an association rule is defined as:

P (A) (4.3)

the ’confidence’ as:
P (B | A) (4.4)

and the ’lift’ as:
P (B | A)

P (B)
(4.5)

High confidence indicates that the probability of event B is high given that
event A is true. High lift on the other hand means that the probability of event
B is higher if event A is true.

For computational efficiency, many of the association rule analysis algorithms
(e.g. the Apriori algorithm [HTF01]) reduce search space by only considering
the combinations of variables that have high marginal support (in a greedy
algorithm fashion). This is based on an assumption that to be interesting a
dependency must have large support—something that may be true for sales
data but not necessarily in other applications (in the WHO database for ex-
ample, early signaling is very important). The restriction to combinations with
large support automatically makes impossible the identification of significant
dependencies between rare states of variables in the database.

The main drawback of association rule analysis is however that variability
in the estimates is completely unaccounted for: no distinction is made between
a lift of 2 based on 10 observations and a lift of 2 based on 1000 observations.
This is the opposite of the drawback with hypothesis tests: relevance but not
significance is accounted for. Association rule analysis is consequently prone to
spurious associations.

4.3 Mutual Information

Mutual Information is a statistic, that originates from Information theory and
measures the strength of the dependency between two variables. The Mutual
Information between two variables X and Y is defined as [CT91]:
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IXY =
∑
x,y

pxy log
pxy

px·p·y
(4.6)

One way to look at this expression for Mutual Information, is as a weighted
sum of the Information Components between all possible combinations of states
for the two variables.

Mutual Information is a well-known statistic for which there are known and
accurate approximations to the posterior mean and the variance [Hut01]. This
speaks in favor of a dependency derivation approach based on Mutual Infor-
mation rather than on the IC, but an important advantage of the IC is its
specificity—when it is the possible dependency between two specific states of
two variables that is of interest, the use of Mutual Information may be mislead-
ing.

Consider two binary variables X and Y and assume that we are interested
in whether X = 1 often co-occurs with Y = 1 (this may represent the co-
occurrence of a specific drug and ADR combination on a report in the WHO
database). Consider the corresponding aggregated data sets (IC00 refers to the
Information Component between the states X = 0 and Y = 0 and similarly for
IC01 and IC10):

Set I Set II
γ00 10 912 20 912
γ01 27 27
γ10 57 57
γ11 4 4
IC00 0.00051 0.00027
IC01 -0.19 -0.20
IC10 -0.09 -0.10
IC11 4.54 5.47
IXY 0.0012 0.0008

Note that II
XY > III

XY , even though ICI
11 < ICII

11 ! The explanation for this
is that the Information Components except for the one of interest, IC11, is lower
in configuration II. In addition, the combination of interest is very rare in the
database and therefore has little impact on the Mutual Information calculation
where each Information Component ICij is weighted by pij .

Clearly in an application where we are particularly interested in the de-
pendency between two specific states of two variables, the proper Information
Component is a more appropriate measure than Mutual Information.

Another advantage of IC in is that its sign indicates whether the co-occurrence
of the two states is unexpectedly common or unexpectedly rare. The Mutual
Information between two variables is on the other hand always greater than 0,
and enables no such distinction.
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Part IV

Monte Carlo analysis of the
IC distribution
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Chapter 5

Methods and model

The main contribution of this thesis to ongoing research in IC analysis is the
incorporation of a Monte Carlo method for more accurate information about the
IC distribution, and as an alternative to the approximate methods currently
used.

Principles of the method and results based on it are presented and discussed
in this final and most important part of the report. All simulations are imple-
mented and carried out in the MATLAB environment.

5.1 Model assumptions and annotation

The implementation of the Monte Carlo method is based on a mD (multino-
mial/Dirichlet) data model (see Section 3.3.3). Specifically, the following as-
sumptions are made about data and parameter distributions:

{c00, c01, c10, c11} ∼ Mn(p00, p01, p10, p11, c··)
{p00, p01, p10, p11}prior ∼ Dir(α00, α01, α10, α11)

{p00, p01, p10, p11}posterior ∼ Dir(γ00, γ01, γ10, γ11)

Since the analysis of the IC prior distribution is similar to that of the IC
posterior distribution, the results presented in the following sections apply to
both. We will however, for simplicity, refer to the parameters of a general IC
distribution as γij .

As mentioned earlier, the γ parameters of the mD model are closely related
to the database counts. For a prior distribution, they may be thought of as
pseudo-counts representing prior knowledge, and for a posterior distribution,
they are the sum of the true counts and the pseudo-counts. If Haldane’s prior
(see Section 3.4.3) is used, the pseudo-counts are all 0, and the γ parameters are
consequently equal to the database counts. The Monte Carlo method as such,
is however independent of the choice of prior distribution.
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5.2 Setup of the systematic analysis of the IC

distribution

The values of the four parameters γ00, γ01, γ10 and γ11 in the joint Dirichlet
distribution of p00, p01, p10 and p11 all have an impact on the IC distribution.
Since they may take on any non-negative values, exhaustive, simulation-based
evaluation of the shape of the IC distribution for all possible sets of parameter
values is intractable. The results in Chapter 6 are therefore based on separate
studies of each parameter’s individual impact. The validity of this setup is
commented on in the discussion (see Section 7.2).

Since both prior and posterior distribution parameters in the mD model can
be thought of as pseudo-counts (see Section 3.4), and since the database itself
is often described in terms of c11, c1·, c·1 and c··, we will generally consider
the corresponding parameters γ11, γ1·, γ·1 and γ·· rather than the fundamental
parameters γ00, γ01, γ10 and γ11 in the study of parameter impact on the IC
distribution. Of course when all parameters but one a are kept fixed, there is a
1 : 1 correspondence between these aggregated parameters and the fundamental
parameters: exclusive variation in γ1· corresponds to variation in γ10, exclusive
variation in γ·1 corresponds to variation in γ01 and exclusive variation in γ··
corresponds to variation in γ00.

To enable quantitative examination of the shape of the distribution, the
following features are measured: standard deviation (the spread), skewness (the
degree of asymmetry) and kurtosis (tendency to be heavy-tailed). Standard
deviation and kurtosis range from 0 to infinity and skewness may take on any
real value. For a normal distribution the skewness is 0 and the kurtosis is 3.
A negative skewness indicates a distribution skewed to the left, and a positive
skewness indicates a distribution skewed to the right. A kurtosis larger than
3 indicates tails heavier than those of the normal distribution and a kurtosis
smaller than 3 indicates tails that are lighter.

5.3 Implementation of the Monte Carlo method

The Monte Carlo method for analysis of the IC distribution has been success-
fully implemented in a number of MATLAB routines. If used in routine IC
analysis of the WHO database, the MATLAB routines will be replaced by more
efficient programs in a compiled language such as C.

5.3.1 Outline of the method

The general strategy of the Monte Carlo method for IC analysis is rather
straightforward:

1. Draw a large number of parameter sets {p∗00, p∗01, p∗10, p∗11} ∼ Dir(γ00, γ01, γ10, γ11)

2. For each randomly drawn parameter set, calculate IC∗ = log2
p∗11

p∗1·p
∗
·1
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Figure 5.1: Schematic description of the Monte Carlo method for IC analysis
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3. Study the IC∗ distribution to make inference about the IC distribution

Credibility intervals in general, and ICα/2 (see Section 3.2) in particular, are
estimated by the corresponding simulation quantiles. (As an aside, note that the
question of how to best estimate confidence intervals based on classical bootstrap
simulation is much more heavily debated, and that no method proposed so far
has been generally accepted to be superior to the others [Hjo94].)

Ideally, a closed form expression for the accuracy of the Monte Carlo-based
ICα/2 estimation, would indicate the number of draws necessary for a certain
precision in this estimate, but no such expression is known.

Instead, the variation in ˆICα/2 for a given number of draws, can be esti-
mated by studying its empirical variance over a large number of repeated simu-
lations. This result will be specific to that particular combination of distribution
shape and number of draws in the simulation. Since the uncertainty in Monte
Carlo-based quantile estimates is proportional to the spread of the simulated
distribution, an upper limit for the variation can be found by considering the
sampling variability for estimates based on the most spread-out distribution.

The current normal approximation indicates that the spread of the IC dis-
tribution increases with decreased values for all the parameters of the Dirichlet
distribution. An initial experiment with 100 simulations (each with 30 000
draws) of IC∗α/2, was carried out for a Dir(1, 1, 1, 1) parameter distribution. In
this experiment, all 100 IC∗α/2 estimates were within an interval more narrow
than 0.2 bits. It is consequently a reasonable assumption that the accuracy
of IC∗α/2 based on 30 000 draws is at the very least better than 0.2 bits (and
generally much better).

The benefit of the Monte Carlo method is that for a large enough number
of draws, the IC∗ distribution is a precise and unbiased approximation to the
IC distribution. The drawback with this method is that it is computationally
intensive, and that the computational complexity increases with the number of
draws (thus with the demand for accuracy).

5.3.2 Dirichlet random variate generation

In Monte Carlo simulation of the IC distribution, random configurations: {p∗00, p∗01, p∗10, p∗11} ∼
Dir(γ00, γ01, γ10, γ11) need to be generated.

This is accomplished by simulating a carefully selected set of marginal prob-
abilities: P (X = x), P (Y = y | X = x) and P (Y = y | X 6= x). These marginal
probabilities follow Beta distributions for which random variates can be gener-
ated with Cheng’s BB algorithm [Che78], which is a type of rejection method
(see Section 2.3.3):

p∗1· ∼ Be(γ1·, γ·· − γ1·) (5.1)
p∗11|1· ∼ Be(γ11, γ1· − γ11)

p∗01|0· ∼ Be(γ01, γ0· − γ01)
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Figure 5.2: Comparison of IC simulations based on the binomial/Beta data
model and on the mD data model (either Gamma or Beta based). γ11 = 3,
γ1· = 10, γ·1 = 106 and γ·· = 106. 30 000 draws were used in each simulation.

The most important property of this set of marginal probabilities is that
although they have been simulated independently, these marginals can be used
to reconstruct the joint Dirichlet distribution without failing to account for
covariation.

The Dirichlet random variates are:

p∗00 = (1− p∗01|0·)(1− p∗1·)

p∗01 = p∗01|0·(1− p∗1·)

p∗10 = (1− p∗11|1·)p
∗
1·

p∗11 = p∗11|1·p
∗
1·

(5.2)

To illustrate the importance of accounting for covariation in IC simulation,
and to underline that this is properly accomplished with the proposed Dirichlet
random generator, Figure 5.2 compares simulated IC distribution based on
this and two other random generators: one for the bB data model (based on
independent Beta random variates for p11, p1· and p·1) and one for the mD
model (based on Dirichlet random generation through Gamma variates).

The similarity in this figure between the Gamma and the Beta based simu-
lations supports the validity of the proposed method. The noticeable difference
between these two and the IC distribution based on the bB data model, on the
other hand illustrates the impact that neglected covariation may have on the
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IC distribution. In fact, since marginal distributions often overlap, bB based
simulation may even produce inconsistent triplets where e.g. p1· < p11 (which
is obviously incorrect since p1· ≡ p11 + p10 ≥ p11).

The motivation for using the less straightforward Beta type Dirichlet random
generator rather than the standard Gamma type, is that for a four dimensional
Dirichlet distribution, the Beta method seems to be more efficient.

5.4 Method related issues

This section is a compilation of method and model related conclusions, that to
my knowledge have not been mentioned in previous research.

5.4.1 On covariation in the mD data model

The advantage of the full mD data model over the simplified bB data model,
is that the former allows for proper derivation of covariation between p11, p1·
and p·1. This section is devoted to find expressions for these covariances. These
expressions will turn out to be very helpful later on in the analysis of how (and
when) the different parameters affect the shape of the IC distribution.

As an aside, note that the variances of the parameters are those of the
corresponding Beta distributions:

V ar(p11) =
p̂11(1− p̂11)

γ·· + 1
(5.3)

V ar(p1·) =
p̂1·(1− p̂1·)

γ·· + 1
(5.4)

V ar(p·1) =
p̂·1(1− p̂·1)

γ·· + 1
(5.5)

As for the covariances, the set of fundamental parameters: {p00, p01, p10, p11}
follows a Dir(γ00, γ01, γ10, γ11) distribution. The general formula for the covari-
ance between p00, p01, p10 and p11 is [Wil62] (for annotational simplicity, p̂ij

here denotes γij/γ·· etc.):

Cov(pij , pkl) =
δikδjlp̂ij − p̂ij p̂kl

γ·· + 1
(5.6)

Based on this, explicit formulae for the covariances between p11, p1· and p·1
can be derived:

Cov(p11, p1·) = Cov(p11, p11 + p10) = V ar(p11) + Cov(p11, p10) = (5.7)

=
p̂11(1− p̂11)

γ·· + 1
− p̂11p̂10

γ·· + 1
=

p̂11(1− p̂11 − p̂10)
γ·· + 1

=

=
p̂11(1− p̂1·)

γ·· + 1
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and

Cov(p11, p·1) =
p̂11(1− p̂·1)

γ·· + 1
(5.8)

Finally:

Cov(p1·, p·1) = Cov(p11 + p10, p11 + p01) = (5.9)
= V ar(p11) + Cov(p11, p10) + Cov(p11, p01) + Cov(p10, p01 =

=
p̂11(1− p̂11)

γ·· + 1
− p̂11p̂10

γ·· + 1
− p̂11p̂01

γ·· + 1
− p̂10p̂01

γ·· + 1
=

=
p̂11p̂00 − p̂10p̂01

γ·· + 1

Note that whereas the sign of Cov(p1·, p·1) varies, neither Cov(p11, p1·) nor
Cov(p11, p·1) are ever negative. This may explain why the spread of the näıve
simulation (based on independent sampling) in Figure 5.2 was remarkably larger
than those based on the two Dirichlet based simulations: the positive covariance
between the nominator (p11) and the denominator (p1· and p·1 respectively)
reduces the spread of the IC distribution (since when p11 is unexpectedly high
or low, the chances that p1· and p·1 are as well increase). Disregarding this leads
to an over-estimation of the IC distribution’s variability.

5.4.2 On the equivalence of mD and PG data models un-
der Haldane-like priors

With Haldane-like priors {p00, p01, p10, p11} ∼ Dir(0, 0, 0, 0) and λ00 ∼ Ga(0, 0)
etc., the mD and the PG data models yield equivalent posterior IC distributions.

Consider the PG data model. With counts c00 etc. the posterior distributions
for the intensities λ00 etc. will be: Ga(c00, 1) etc. (see Section 2.1.2). The
corresponding probabilities p00 etc. are given by the ratios λ00

λ00+λ01+λ10+λ11
etc.

A known relationship between Gamma and Dirichlet distributed variable
sets states that for a given set of Gamma distributed variables {X1, . . . , Xk}
where Xi ∼ Ga(xi, 1), the set { X1P

i Xi
, . . . , XkP

i Xi
} is Dir(x1, . . . , xk) distributed.

This means that {p00, p01, p10, p11} ∼ Dir(c00, c01, c10, c11), which is exactly
equivalent to the posterior distribution in the mD model for these priors.

The similarity between the two methods is further emphasized by the fact
that the the marginal counts in the mD model follow binomial distributions,
that are asymptotically equivalent to Poisson distributions. In particular, the
Poisson distribution with intensity λ is asymptotically equivalent to a binomial
distribution of n trials and probability of success p, if n tends to infinity and p to
0 while the product np remains fixed (and equal to λ) [Ric95]. The large sparse
databases often considered in IC analysis, feature exactly these characteristics.

Altogether, this indicates that the performance of IC analysis should be
rather robust with respect to the choice between the mD and the PG data
models.
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5.4.3 On the similarity between the regular and the Bayesian
bootstrap

This section shows that for multinomially distributed data, again with Haldane-
like priors, there is a close relationship between the Bayesian bootstrap method
(see Section 2.2.5) and Monte Carlo simulation from the posterior. Because of
the equivalence between the mD and the PG data models under these circum-
stances (see Section 5.4.2), this result also holds for Poisson distributed data.

Given a data set with counts c00, c01, c10 and c11, considered to follow a
multinomial distribution, assume a joint Dir(0, 0, 0, 0) prior distribution for the
corresponding probabilities p00, p01, p10 and p11. This gives a corresponding
Dir(c00, c01, c10, c11) posterior distribution.

The Bayesian bootstrap method assigns Dir(1, 1, . . . , 1) distributed random
weights to the records in the database (see Section 2.2.5). If we, instead of con-
sidering the random weights for each individual record in the database, aggrea-
gate the random weights for each record type, they will follow a Dir(c00, c01, c10, c11)
distribution. Consequently, in each Bayesian bootstrap draw, the parameters
{p00, p01, p10, p11} follow the same distribution as in the regular Monte Carlo
simulation from the posterior (based on Haldane-like priors).

The trademark of the Bayesian bootstrap is that it assumes no data model
and no prior distribution. However, it seems that Monte Carlo simulation
from a posterior distribution based on Haldane-like priors imitates the Bayesian
bootstrap—both with the mD and the PG data models.
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Chapter 6

Results

The implementation of the new Monte Carlo method has resulted in four main
contributions:

• A characterization of the IC distribution and its sensitivity to different
parameter values

• An investigation into the validity of different approximations to the IC
distribution

• A proposed new approach for derivation of ICα/2 estimates

• A comparison of the classical and the Bayesian approach, via the regular
and the Bayesian bootstraps

6.1 Characteristics of the IC distribution

In this section, different characteristics of the IC distribution are presented.
The study is based on Monte Carlo simulations of the distribution, with 30 000
draws in each simulation. The mD data model described in Section 3.3.3 is
assumed to be the correct model of how data is generated, the annotation used
in this section was introduced in Section 5.1, and the setup of the experiment
and how the parameters of the Dirichlet distribution relate to the counts in the
database was explained in Section 5.2.

Also, note that when the impact of a certain parameter is studied, the values
of the other (fixed) parameters are somewhat arbitrary. The counts in high
dimensional databases (databases with many different variables) are however
generally such that c11 is much smaller than c1· and c·1, and these in turn
generally much smaller than c··, and this is to some extent reflected in the
choice of values used for the fixed γ parameters.

The results presented, apply to both prior and posterior IC distributions,
as long as the parameters are modeled by joint Dirichlet distributions. The
parameters of the Dirichlet distribution are denoted γ00, γ01, γ10 and γ11 both
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Figure 6.1: The impact of γ11 on standard deviation, skewness and kurtosis, for
simulated IC distributions with γ11 between 1 and 100 and the other parameters
constant: γ1· = γ·1 = 103 and γ·· = 106.

for prior and posterior distributions, and γ1· refers to the sum of γ10 and γ11

etc.

6.1.1 The impact of γ11

Figure 6.1 indicates that variation in γ11 tends to have a rather significant
impact on all three features—standard deviation, skewness and kurtosis. This
impact is especially dramatic for low γ11 (approximately between 1 and 25,
for this particular value of γ11) when the standard deviation drops from 2 to
below 0.4 (bits), the skewness increases from -1 to -0.2 and kurtosis drops from
6 to close to 3. The two latter observations indicate that the IC distribution
approaches a normal distribution for increased γ11. The skewness however, does
not tend to 0 as rapidly as the kurtosis tends to 3, and it is unclear from this
diagram whether or not the asymptotic tendency of skewness is to approach 0 or
not. However, simulations of IC distributions with γ11 = 1000 give skewness in
the order of magnitude 10−2 and simulations with γ11 = 10 000 give skewness
in the order of magnitude 10−4, something that indicates that the skewness
does in fact seem to tend to zero. As expected, low values of γ11 give the most
asymmetric and spread out IC distributions.

To show how the shape of the IC distribution varies for different values of
γ11, six specific IC distributions are displayed in Figure 6.2. This may facilitate
the interpretation of how standard deviation, skewness and kurtosis vary with
γ11. The tendency of both standard deviation and asymmetry to decrease as
γ11 increases is clear.

6.1.2 The impact of γ1· and γ·1
Since the IC distribution is symmetric with respect to γ1· and γ·1, any results
derived for γ1· are also valid for γ·1. Unless otherwise stated, γ1· is therefore
assumed to be the lower of γ1· and γ·1, to simplify annotation.
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Figure 6.2: The shape of six specific IC distributions with γ11 varying between
1 and 100, γ1· = γ·1 = 103 and γ·· = 106.

Figure 6.3 and Figure 6.4 indicate that as long as both γ1· and γ·1 are large
compared to γ11 (requiring a ratio of at least 10:1 seems to be a good heuristic),
the impact of variation in γ1· or γ·1 on the shape of the IC distribution is almost
negligible. However, Figure 6.3 also shows that for low values of γ1·, all three
shape features vary significantly. The shape features stabilize when γ1· increases
above 100: the standard deviation around approximately 0.7 bits, the skewness
around -0.6 and the kurtosis around 3.8. The asymptotic values for the shape
features with respect to variation in γ1· depend heavily on γ11, but there are,
for any choice of γ11, asymptotic values of the shape features with respect to
variation in γ1· or γ·1.

The decreased standard deviation of the IC distribution when γ1· approaches
γ11 is likely to be attributable to increased covariance between p11 and p1·, as
discussed in Section 5.4.1. Figure 6.5 and Figure 6.6 show that high covariation
between p11 and p1· coincides with low variance of the IC distribution. The fact
that the covariance is proportional to (1 − p̂1·), as indicated in Equation 5.7,
explains the increased Cov(p11, p1·) when γ1· decreases.

It is hard to tell whether the impact on skewness and kurtosis for low values
of γ1·, should be attributed to the increased covariation or to the fact that when
γ1· ≈ γ11, the two parameter values are about equally uncertain.

Figure 6.7 shows three specific IC distributions where the impact of reduced
spread when γ11 ≈ γ1· is evident. The three distributions have constant values
for γ11, γ·· and for the product γ1· · γ·1 (to fix the horizontal placement), but
the values of γ1· and γ·1 vary. The two distributions to the left and in the
center, for which γ1· À γ11, are very similar, but the right-most distribution
has a remarkably lower variance. This is due to the increase in Cov(p11, p1·)
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Figure 6.3: Impact on standard deviation, skewness and kurtosis of simulated
IC distributions for an increase in the lower of the two marginal parameters
(here γ1·) from 4 to 100. The other parameters are constant: γ11 = 4, γ·1 = 103

and γ·· = 106.

when γ1· approaches γ11, that leads to decreased spread of the IC distribution
as discussed in Section 5.4.1.

6.1.3 The impact of γ··
The parameter γ·· appears to have a rather limited impact on the shape of the
IC distribution. Figure 6.8 shows that, when the other parameters are fixed, the
standard deviation, skewness and kurtosis are robust with respect to variation
in γ··. The limited influence of γ·· is further illustrated by the fact that the
distributions in Figure 6.9 are so similar in shape despite significant variation
in γ··.

6.1.4 Combined parameter impact

The most important conclusion of the previous three sections is that when
γ11 < 0.1·min(γ1·, γ·1), the shape of the IC distribution is largely determined by
the value of γ11 alone. To illustrate this, Figure 6.10 shows six IC distributions
with a common γ11 value, but varying values for γ1·, γ·1 and γ··. All six distri-
butions appear to be very similar in shape (possibly with the exception of the
two distribution in the bottom right corner where min(γ1·, γ·1) ≈ 10c11). This
supports our previous conclusions about the general unsignificant impactof γ1·,
γ·1 and γ·· on the shape of the IC distribution. Any dissimilarity between these
distributions would in contrast have indicated either interaction effects due to
the concurrent variation of γ1·, γ·1 and γ·· or effects that can not be detected
by studying standard deviation, skewness and kurtosis.
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Figure 6.7: Three specific simulated IC distributions with γ1· varying from 100
to 1000. Two parameters are fixed: γ11 = 90 and γ·· = 20000. The parameter
and γ·1 is adjusted to fix the horizontal displacement.

4000 8000 12000
0

0.5

1

1.5

2

γ⋅ ⋅

Standard Deviation

4000 8000 12000

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

γ⋅ ⋅

Skewness

4000 8000 12000
0

2

4

6

8

10

γ⋅ ⋅

Kurtosis

Figure 6.8: The impact on the standard deviation, the skewness and the kurtosis
of simulated IC distributions of variation in γ·· in steps of 100 from 2000 to
12 000. The other parameters are: γ11 = 4, γ1· = 500 and γ·1 = 1000.

−8 −6 −4
0

0.1

0.2

0.3

0.4

0.5

γ⋅ ⋅=2000.

IC

P
ro

ba
bi

lit
y 

D
en

si
ty

−6 −4 −2 0
0

0.1

0.2

0.3

0.4

0.5

γ⋅ ⋅=20 000.

IC

P
ro

ba
bi

lit
y 

D
en

si
ty

−2 0 2
0

0.1

0.2

0.3

0.4

0.5

γ⋅ ⋅=200 000.

IC

P
ro

ba
bi

lit
y 

D
en

si
ty

Figure 6.9: Three specific IC distributions with γ11 = 3, γ1· = 500 and γ·1 =
1000 in common, and different values of γ··
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Figure 6.10: Six specific IC distributions with γ11 = 4 and γ··
γ1·γ·1

= 0.5 (to fix
the horizontal displacement of the distribution). The individual values of γ1·,
γ·1 and γ·· vary.

6.2 Validity of the approximations

This section evaluates the validities of two types of approximate derivation of
ICα/2: based on the currently implemented normal approximation (see Sec-
tion 3.5.1), and based on the fixed marginals approximation (see Section 3.5.3).
The comparison is made against Monte Carlo based (30 000 draws) ICα/2 esti-
mates.

Note that it is the absolute difference between ICα/2 estimates that is of
interest, since we consider an error of e.g. 0.2 bits to be equally important
regardless of how close to 0 the actual estimate is.

Figure 6.11 and Figure 6.15 display the respective accuracies of the ICα/2

estimates over wide ranges of parameter values.

6.2.1 Validity of the normal approximation

The results in Section 6.1 indicate that ICα/2 estimates based on the current
normal approximation will be least appropriate for parameter configurations
with low γ11 or with γ1· or γ·1 not significantly larger than γ11. The reason is that
for the former type of parameter sets, the true IC distribution is asymmetric
and for the latter type of parameter sets, the variance is lower than indicated
by the approximate formula for the variance (Equation 3.8).

These predictions are confirmed by Figure 6.11, in which parameter sets that
yield inaccurate ICα/2 estimates (off by more than 0.2 bits), are indicated (for
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Figure 6.11: This is a three dimensional plot where each point on the graph
represents a set of parameter values γ11, γ1· and γ·1. For each parameter set,
ICα/2 has been estimated both based on Monte Carlo simulation (30 000 draws)
and based on the current normal approximation (see Section 3.5.1). Triangles
(red) indicate parameter sets for which the two estimates differ by more than 0.2
bits and plus signs (blue) indicate parameter sets for which the two estimates
differ by less than 0.2 bits. γ11 is varied between 1 and 1024, γ1· and γ·1 are
varied between 5 and 5120 and γ·· is constant and equal to 1 000 000.
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Figure 6.12: Comparison between exact and approximate posterior mean esti-
mates for the IC distribution with parameters γ11 = 1, γ1· = 100, γ·1 = 1000
and γ·· = 2830764. The dotted distribution is the normal approximation that
is currently used.
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Figure 6.14: Comparison between exact and approximate IC credibility inter-
vals for the asymmetric IC distribution with parameters γ11 = 1, γ1· = 100,
γ·1 = 1000 and γ·· = 2830764. The normal approximation used currently is
displayed in dots.

better interpretability, no distinction between positive and negative deviations
is made).

The parameter sets yielding inaccurate ICα/2 estimates can, as indicated
in Figure 6.11, be separated into two intervals (that may not be optimally
compact):

1. γ11 ≤ 10

2. γ11 ≥ 0.1min(γ1·, γ·1)

A normal approximation, no matter how refined, can only be valid if the
distribution at hand is fairly close to normally distributed. One of the standard
tests for normality (e.g. the Jarque-Bera test or the Lilliefors test) could be used
to determine this. On the other hand, it is clear from inspection of the simulated
distributions and plots of skewness and kurtosis, that for low values of γ11 the
IC distribution is definitely non-normal. In addition, a test for normality does
not account for the impact of approximate formulae for the mean and variance.

As pointed out in Section 6.1.1, the IC distribution tends to be heavy-tailed
towards the left when it is asymmetric. This will, for parameter sets with low
γ11, lead to type I errors: over-estimating the significance of a finding.

That the true covariance is higher than what is indicated by the approximate
formula for the variance will on the other hand, for parameter sets with γ11

close to γ1· or γ·1, lead to type II errors: under-estimating the significance of an
indication.

Figure 6.13 plots the accuracy of the approximate posterior mean estimate
(Equation 3.7) and the skewness of the IC distribution against γ11. This fig-
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Figure 6.15: This is a three dimensional plot where each point on the graph
represents a set of parameter values γ11, γ1· and γ·1. For each parameter set,
ˆICα/2 has been estimated both based on Monte Carlo simulation (30 000 draws)

and based on the fixed marginals approximation (see Section 3.5.3). Triangles
(red) indicate parameter sets for which the two estimates differ by more than 0.2
bits and plus signs (blue) indicate parameter sets for which the two estimates
differ by less than 0.2 bits. γ11 is varied between 1 and 1024, γ1· and γ·1 are
varied between 5 and 5120 and γ·· is constant and equal to 1 000 000.

ure clearly illustrates the tendency of increased skewness and decreased p.m.e.
accuracy for low γ11. This effect is important to examine, since an inaccurate
p.m.e. approximation displaces the entire estimated distribution, and thereby
directly alters ˆICα/2. Especially for asymmetric distributions, the inaccuracy
of the approximate p.m.e. is large enough to motivate refined calculations. The
obvious solution is to replace Equation 3.7 by Equation 3.12.

As discussed in Section 5.4.1 and shown in Figure 6.7, the increased covari-
ance between e.g. p11 and p1· as γ11 approaches γ1· results in a decreased spread
of the IC distribution. The current approximate formula for the variance disre-
gards covariance and therefore fails to account for this effect. Consequently, the
accuracy of the approximate variance formula decreases as γ11 increases relative
to γ1·.

6.2.2 Validity of the fixed marginals approximation

The impact of approximating the IC distribution with a distribution that has
fixed marginal probabilities p1· and p·1 is remarkably slight. As indicated in
Figure 6.15 the fixed marginals approximation (see Section 3.5.3) of ICα/2 gen-
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erally deviates by less than 0.2 bits for most sets of parameters γ11, γ1· and γ·1,
except for some configurations when min(γ1·, γ·1) < 100.

A motivation for the limited impact of assuming p1· and p·1 to be fixed, is
that the contribution from uncertainty in each parameter to the variance of the
IC distribution is proportional to (1−p̂)

p̂ (see Equation 3.8). This ratio decreases
with increased p̂ on the entire interval [0, 1]. Therefore, the contribution from
the parameter p11 to variability in the IC is always larger than the contribution
from each of p1· and p·1 (since p11 < min(p1·, p·1)). This may explain the
unexpectedly high accuracy of the fixed marginals approximation.

6.3 Proposed approach

This section introduces two ways to implement Monte Carlo simulation in IC
analysis: brute force simulation and a tabular method. A detailed algorithm for
how the different available methods can be combined to yield accurate results
in a computationally efficient way is also proposed.

6.3.1 Two Monte Carlo based methods

The straightforward way to implement a Monte Carlo based method for IC
analysis is to run Monte Carlo simulations for each investigated parameter set.
However, in a database where there are hundreds of thousands, or more, IC dis-
tributions to investigate, it is usually computationally intractable to run Monte
Carlo simulation for every single distribution.

Alternatively, a tabular method can be used. This is an approximate method
based on Monte Carlo simulation that resembles how traditional statistical ta-
bles are used. A näıve such approach would be to try to tabulate ICα/2 values
for all possible parameter configurations, but this would for most databases
be futile: in dynamical databases c·· changes constantly and so would con-
sequently γ··. The strategy proposed here instead utilizes the fact that the
shape of the IC distribution is generally invariant to variation in all param-
eters but γ11. This means that for a given γ11, the distance between ICpme

and ICα/2 will be constant. The idea is to tabulate IC∆ (= ICpme − ICα/2)
values based on precise Monte Carlo simulations for common values of γ11.
Then, for any given parameter configuration, ICα/2 can be approximated by
ˆICpme(γ00, γ01, γ10, γ11)−IC∆(γ11). This approach is particularly useful if only

a limited set of values for γ11 is observed in the database, and accurate enough
if min(γ1·, γ·1) > 10γ11

6.3.2 Summary of available methods

In summary, there are now four methods for ˆICα/2 derivation: the normal
approximation (see Section 3.5.1), the fixed marginals approximation (see Sec-
tion 3.5.3), brute force simulation and the tabular method. These approaches
vary in running time and the domain of parameter values for which they give
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Figure 6.16: A Venn diagram that indicates how the applicability ranges of the
four different methods relate. The abbreviations are MC: brute force simulation,
T: the tabular method, FIX: the fixed marginals approximation and N: the
normal approximation.

accurate results (in this discussion, a method that gives ICα/2 estimate with an
accuracy of 0.2 bits for a certain parameter set is considered to be applicable to
that parameter set):

The current normal approximation Applicable when γ11 > 10 and min(γ1·, γ·1) >
10γ11. Evaluation of two simple formulae—very fast.

The fixed marginals approximation Applicable when min(γ1·, γ·1) > 100.
Requires a Newton-Raphson iteration.

The tabular method Applicable when min(γ1·, γ·1) > 10γ11 and the γ11 value
of interest is tabulated. Requires the calculation of one series expansion
and the retrieval of a tabulated value at execution, but there is a signifi-
cant setup time that increases linearly with the number of precalculated
IC∆ values.

Brute force simulation Applicable over the entire domain, but computation-
ally intensive and the complexity grows with required accuracy.

6.3.3 Proposed algorithm

If time is limited, complex Monte Carlo simulations should be avoided to as large
an extent as possible. Figure 6.16 displays a Venn diagram that illustrates how
the validity domains of the four different methods relate. Note that any time
the normal approximation is applicable, so is the fixed marginals approximation,
and that the opposite is not true.

The recommended method is therefore to (the first step is carried out once
and for all initially, but the three following steps are carried out for every pa-
rameter set investigated):
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1. Run Monte Carlo simulations (30 000 draws) and store IC∆ values for the
most common γ11

2. If min(γ1·, γ·1) > 10γ11 and γ11 is stored, then use the tabular method

3. Else if min(γ1·, γ·1) > 100, then use the fixed marginals method

4. Else run a specific Monte Carlo simulation (30 000 draws)

6.3.4 Tractability of the proposed algorithm

To give an idea of the proportion of combinations that could be handled with
each approach in the proposed method (see Section 6.3) when applied to the
WHO database, we consider the database after the second quarterly update,
2002 (assume that there are stored IC∆ values for γ11 between 1 and 1000).
This table displays two numbers: the number of drug/ADR combinations that
each approach would be applicable to (expected accuracy better than 0.2 bits),
and the number of combinations that would actually be handled by each type
analysis if the proposed algorithm was applied to the data set:

Approach Applicable to: Applied to in proposed algorithm:
Brute force simulation 571 685 (100%) 42 639 (7.5%)

Tabular method 526 170 (92%) 526 170 (92%)
Fixed marginals approximation 439 310 (77%) 2 876 (0.5%)

Normal approximation 77 403 (14%) 0 (0%)

It is worth noting that the reason for the limited applicability of the normal
approximation is that over 85% of the observed drug/ADR combinations in the
WHO database have counts smaller than 10. Also note that the fixed marginals
approach is accurate for very few combinations that cannot be handled by the
tabular approach.

To run the 43 000 Monte Carlo simulations with 30 000 draws each, is
estimated to take less than 4 hours on a computer with a 1 GHz processor
and the algorithms implemented in the C programming language (Roland Orre,
personal communication).

6.4 A classical approach: bootstrapping the IC
distribution

One way to determine the impact of the Bayesian approach on IC analysis, is
to compare Bayesian and regular bootstrap distributions for the IC. This was
carried out as part of this thesis project for an artificial data set with aggregated
counts: c11 = 3, c1· = 20, c·1 = 100, and c·· = 1000.
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Figure 6.17: Comparison of the results of a Bayesian and a regular bootstrap
distribution estimate. 100 000 draws in each simulation from a batch with
c1· = 20, c·1 = 100, c11 = 3 and c·· = 1000. The histogram indicates the
result of the regular bootstrap, and the line indicates the result of the Bayesian
bootstrap.
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Figure 6.18: Comparison of Be(2,2) to a scaled bin(4,0.5).
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Figure 6.19: Comparison between the Beta distributions and their correspond-
ing (scaled) binomials for an authentic combination in the database. The counts
are rather large: c1· = 5495, c·1 = 1067, c11 = 973 and c·· = 2830764. There are
slight differences between the three distribution pairs although they are almost
impossible to make out in this resolution.

First note, that for the problem at hand (probability estimation from di-
chotomous data) the parametric and the non-parametric versions of the regular
bootstrap are equivalent—they both correspond to sampling from a binomial
distribution [Hjo94]. Therefore, the comparison to the Bayesian bootstrap au-
tomatically applies to both.

Figure 6.17 displays the result of the regular and the Bayesian bootstrap
distributions. They are rather similar, apart from the −∞ peak of the regular
bootstrap distribution. This is due to the rare but possible p̂∗11 = 0 simulated
parameter estimate that results in IC∗ = log 0 in the regular bootstrap. p̂11 = 0
estimates occur when no record with both states is selected in the resampling
procedure (see Section 2.2.2).

Another important difference between the regular and the Bayesian boot-
strap methods is that the Bayesian bootstrap may produce any IC value, but
that the regular bootstrapped IC distribution is discrete (the simulated p̂11, p̂1·
and p̂·1 are always multiples of 1

c··
).

Now, consider the regular bootstrap distribution of one of the constituting
parameter estimates, say p̂11, and the Bayesian bootstrap distribution of the
corresponding parameter p11. The parameter estimate p̂11 is essentially bino-
mially distributed (p̂11 = c11

c··
, c11 ∼ bin(c··, p11)) and the parameter p11 is Beta

distributed (p11 ∼ Be(c11, c·· − c11). Consequently any difference between the
classical bootstrap and the Bayesian bootstrap is to a large extent due to dif-
ferences between the Be(α, β)-type distributions of the constituting parameters
and the scaled bin(α + β, α

α+β )-type distribution of the parameter estimates.
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Comparisons between Beta distributions and their corresponding scaled bi-
nomial distributions for two sample sets of parameters are presented in Fig-
ure 6.18 and Figure 6.19. Figure 6.18 illustrates that for low enough min(α, β),
the two distributions are clearly dissimilar. Figure 6.19, on the other hand
shows that when min(α, β) is large enough for all three parameters, the two
distributions tend to coincide.

In summary, we see that the two approaches differ for the low counts that are
typical for the WHO database, and that the main advantages of the Bayesian
bootstrap compared to its regular correlate, is that the simulated distribution
is continuous and that IC∗ 6= −∞.
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Chapter 7

Discussion

7.1 General issues

We first discuss some general issues in statistical inference that are particularly
important to any attempt at knowledge discovery.

7.1.1 Multiple Comparisons Issues

When several tests are performed in parallel, the significance of each finding
depends on the total number of tests carried out. The reason for this is obvious:
if several equivalent tests are carried out, the probability that at least one of
these tests will deviate significantly from the expected, is larger than the same
probability for each individual test. The impact of this effect may be striking,
even for a moderate number of tests. Consider for example the probability that
at least one out of 100 parallel tests deviates significantly at the 1% level! This
probability is as high as 1− 0.99100 = 63%

This severely impairs any statement about the significance of findings in ex-
plorative statistical analysis (e.g. data mining applications such as whole genome
scans). There are statistical methods designed to handle this, for example the
Bonferroni method and Tukey’s methods for multiple comparisons [Ric95]. An
alternative approach is to reserve a subset of the data, and use it for follow up
studies aimed to confirm any indications from the initial explorative study.

However, when IC analysis is used merely as a means to rank possible pat-
terns in a database, the multiple comparisons aspect is not very important. In
this case, the purpose is not to prove that an indication is significant, but to
highlight the dependencies that are most interesting for further research. Since
all dependencies are equally affected by the multiple comparisons aspect, the
ranking is not biased.

52



7.1.2 Confounding variables

A confounder is a non-controlled variable that accounts for some of the variation
in one or several of the controlled variables. Some confounders are automatically
handled properly in IC analysis. One such example from the application to the
WHO database is the variable prescription rates of different drug substances.
If a certain drug substance has an overall high but even report rate for all
different ADR’s, this may indicate that this drug substance is widely prescribed
and consequently more likely to be erroneously suspected of causing ADR’s. As
desired, this does not affect the Information Components related to this drug
substance, since both p11 to p1· are affected by the higher prevalence.

Another type of confounder is the “common cause” variable. It is a non-
controlled variable that is the common cause of two observed variables. This
phenomenon may lead to significant over-estimation of the strength of a cer-
tain dependency. An example from drug monitoring is the dependency in
the database between the polio vaccine and the sudden infant death syndrome
(s.i.d.s.). This is due simply to the fact that both these factors are correlated
with young age: polio vaccine is generally given to infants, and all victims of
s.i.d.s. are per definition infants. If the database is stratified with respect to
different age groups, the dependency is insignificant in each stratum [DuM99].

The phenomenon of an indication being weaker in both sub populations
than in the pooled population, is a variation on Simpson’s paradox. Simpson’s
paradox refers to the contra-intuitive (but nevertheless fully logical) observation,
that aggregating two separate populations may reverse a common tendency of
the two individual populations. For a general description of Simpson’s paradox,
see a standard statistical inference text book such as [Ric95].

7.2 Comments to the results

There is an infinite number of possible parameter configurations, and the con-
clusions in this report with respect to the shape of the IC distribution and
the validity of the approximate formulae are based on the assumption that the
IC distribution is well-behaved enough that observed trends and tendencies
extrapolate/interpolate properly to non-investigated parameter combinations.
This corresponds to a general assumption that the impact of variation in one
parameter is not affected by the values of the other parameters. One exception
to this rule is known: the impact of γ1· and γ·1 depend on the value of γ11. Any
other such pairwise interactions are however likely to have been been identified
in the systematic testing setup that is used. On the other hand, this setup may
well miss any interactions between three or four of the parameters, if they exist.
Under all circumstances, it seems to be a fair assumption that in the domain
where variation of γ1·, γ·1 or c·· alone, has no significant impact on the shape of
the IC distribution, simultaneous variation should not either.

It may be argued that the results of the systematic evaluation on which this
report is based is optimized for parameter values typical for high dimensional
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databases (in particular, big differences in magnitude between γ11 and γ··), and
that the results should be further evaluated before applied to databases where
this assumption does not hold.

The use of standard deviation, skewness and kurtosis to quantitatively com-
pare the shapes of different distributions is not perfectly distinctive: two dis-
tributions may have the exact same values for these features even though the
actual distributions are different. On the other hand, simulations from two
very similar distributions are unlikely to yield significantly differing feature es-
timates. Consequently, variation in any of these feature estimates generally
indicates variation in the shape of the distribution.

Section 6.2 shows that the currently used approximate formula for the p.m.e.
is inaccurate for asymmetric IC distributions. This affects all statements about
the accuracy of the current normal approximation in this report. Exact p.m.e.
calculation would improve the general accuracy of the normal approximation.
Certainly, however, the ICα/2 estimate would still be inaccurate for some config-
urations, due to the asymmetry of the true IC distribution and the disregarded
covariance terms in the approximate variance formula.

With a required accuracy of 0.2 bits, the normal approximation turns out
to be applicable to a very small proportion of the combinations in the WHO
database (14%). The explanation for this is that although the normal approxi-
mation is accurate over a large domain of possible parameter sets, it is generally
inaccurate for small values of γ11, when the true IC distribution is asymmetric.
Unfortunately, low γ11 values are fairly common in this and many other of the
interesting data sets.

Section 6.1 showed that over a surprisingly large domain of parameter sets,
the parameter γ11 alone, determines the shape of the IC distribution. This
may motivate why the fixed marginals approximation proposed in Section 3.5.3
is accurate over such a large number of parameter sets. The main advantage of
the fixed marginals method is that it does not require symmetric distributions,
and therefore generally handles low γ11 values better.

The proposed tabular method introduced in Section 6.3 has the advantage
of executing fast and giving accurate results over a large domain of parameter
values. It does however require a certain setup time, during which precise
simulations are run for common values of γ11. The tabular method is ideal
for databases with a small set of often re-occurring γ11 values, like the WHO
database where 85% of the non-zero γ11 are in the range 1 to 10.

7.3 Future research and development

There are several areas of interest for further research and development of the
method:

• The possible implementation of an empirical Bayes method for derivation
of reliable informative prior distributions

• The general impact of different informative prior distributions
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• Higher order Information Components such as that of order three:

IC = log2

p111

p1··p·1·p··1

• Automatic identification of confounding variables, and the use of stratified
or pooled IC estimates

• Extensions of the results presented in this report to the propagation of
probability distributions in a Bayesian neural network framework

• Exact formulae for the covariance between e.g. log(p11) and log(p1·)

• Thorough investigation of the accuracy of the tabular method for different
parameter sets

• Further investigation of the accuracy of the fixed marginals approximation

• A closed form expression for the accuracy of the Monte Carlo-based ˆICα/2,
as a function of the number of draws

7.4 Conclusions

Information on the true shape of the IC distribution is crucial to proper IC
analysis. This report shows that Monte Carlo simulation is a useful approach
for such investigations. The results of Monte Carlo simulations show that (as
expected, see [BLE+98]) the IC distribution is asymmetric with a large spread,
for low parameter values γ11. As γ11 increases, the standard deviation of the
IC distribution decreases, and the skewness and kurtosis values tend asymp-
totically to 0 and 3 respectively—the values typical for a normal distribution.
Over a surprisingly large domain of parameter sets, the parameter γ11 alone,
determines the shape of the IC distribution. In particular, when none of the
other parameters are smaller than 100, or less than 10 times as large as γ11, nei-
ther γ1·, γ·1 nor γ·· affect the shape of the IC distribution (only the horizontal
placement).

Furthermore, this report shows that the ICα/2 estimates based on the cur-
rent normal approximation are inaccurate for certain sets of parameters γ11, γ1·,
γ·1 and γ··. This applies particularly to the low values of γ11, that are typical
in the high dimensional databases that are often subject to IC analysis. This
motivates the development of refined methods for ˆICα/2 derivation.

Monte Carlo simulation provides accurate ICα/2 estimates for all possible
parameter sets and this report suggests that Monte Carlo methods be incorpo-
rated in routine IC analysis. Brute force simulation is however computation-
ally complex, and therefore a more tractable tabular method is proposed, where
the results of pre-run Monte Carlo simulations for common parameter sets are
reused.
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Appendix A

Review of probability
distributions

This appendix reviews some of the probability distributions relevant to this
thesis.

A.1 The Binomial distribution

The number of successes x out of n independent identically distributed (i.i.d.)
trials follows the binomial distribution. The probability of success is denoted p.

P (x) =
(

n

x

)
px(1− p)n−x (A.1)

A.2 The Poisson distribution

The Poisson distribution can be seen as the limit of a binomial distribution as p
tends to zero and n to infinity, while the product np = λ remains constant. The
intensity λ is the unique parameter of the Poisson distribution, whose frequency
function is:

P (k) =
λk

k!
e−λ (A.2)

The number of radioactive decays over a fixed period of time is routinely
modelled as a Poisson distribution. Another possible application of the Poisson
distribution is to model the white blood cell count in a fixed volume of blood.

The Poisson distribution is generally appropriate when the variable to be
modelled is a discrete number of events on a continuous ‘interval’ (typically in
space or time).
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A.3 The Multinomial distribution

The multinomial distribution is a generalization of the binomial distribution
where, in each trial, several different outcomes are possible. It is a discrete
probability distribution, that assigns probabilities to different sets of counts
n1, n2, . . . , nk, from n i.i.d. trials, where the k different outcome classes occur
with respective probabilities p1, p2, . . . , pk.

P (n1, n2, . . . , nk) =
(

n

n1n2 . . . nk

)
pn1
1 pn2

2 . . . pnk

k (A.3)

A.4 The Beta distribution

The Beta distribution’s probability density function is:

f(p) =
Γ(α + β)
Γ(α)Γ(β)

pα−1(1− p)β−1 (A.4)

The most important use of the Beta distribution is in Bayesian statistics
as the conjugate prior (see Section 2.1.2) to the binomial distribution. It is
non-zero only on the [0, 1] interval.

A.5 The Gamma distribution

The Gamma distribution family includes both the exponential and the chi-
squared distributions. Its general form is:

f(x) =
λα

Γ(α)
xα−1e−λx (A.5)

Gamma distributions are conjugate priors (see Section 2.1.2) to the Poisson
distribution.

A.6 The Dirichlet distribution

The Dirichlet distribution’s probability density function is:

f(p1, p2, . . . , pk) =
Γ(n1 + n2 + · · ·+ nk)
Γ(n1)Γ(n2) . . . Γ(ni)

pn1−1
1 pn2−1

1 . . . pnk−1
k (A.6)

The Dirichlet distribution is the conjugate prior (see Section 2.1.2) to the
multinomial distribution.
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