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Abstract

A method for sequential pattern recognition and prediction in
Bayesian networks is investigated. The basic approach in this
method is to add stimulus delay lines to an associative network,
thus converting temporal structure to a spatial one. Some meth-
ods to avoid very large connection matrices are studied. Results
show that it is possible to efficiently store sequences in a network
where the connection matrix is strongly reduced.

1 Background

Considering certain aspects of information processing performed by biological neu-
ronal networks such as recognition and motor control, it is quite reasonable to
assume that the treatment of temporal patterns is a fundamental property of the
nervous system. In the case of auditory recognition the cochlea performs something
quite similar to an electro-mechanical discrete Fourier transform of the sound in-
put. The mechanical pressure variations are converted to a time varying pattern
of intensities for the decoded frequencies. Certain sounds are only discriminable
due to their temporal properties. For instance, when a recorded piano is played
backwards it will certainly not be recognized as a piano. The same effect is seen on
higher level audio perception, such as listening to melodies or speech understand-
ing. As another example we could consider motoric efference. When generating
motor actions such as speech and locomotion, both a precise timing and precise
patterns of muscle activation sequences are essential for an accurate result. Yet
most of the research in the field of artificial neural networks has dealt with static
pattern recognition and classification problems. Of course it is fundamental to the
science of neural networks to have a good knowledge and understanding of how to
design static classifiers and associative memories. On the other hand, for studies of
higher level behavioral aspects of biological systems and for application of neural
network solutions to real world problems, it is important to have network models
that processes temporal patterns with reasonable performance.

2 Purpose

The goal of the present work was to develop a useful model for temporal pattern
recognition and generation using a neural network based on Bayesian learning. The
temporal network model will further serve as a part of an ANS (Artificial Neural
System). It provides a way to do simulation studies of problems that need to be
treated in a temporal manner.



3 Definition of the temporal problem

Is there such a thing as an ideal temporal associative memory? If so, then how
could that be defined? A temporal memory could be imagined to remember spatio-
temporal patterns. Experience from static associative networks tells us, however,
that patterns stored in a network should not be dependent on intermediate values
for single neurons. Such a net will be too sensitive to disturbances as noise and
faulty neurons. If we want continuous values we use groups of neurons instead. A
reasonable limit then would be to treat only sequences of patterns, whose prototypes
are binary, and to use graded output from units as belief propagation. In any
case, graded values and spatio-temporal patterns can be approximately achieved by
different coding techniques such as interval coding and population coding.

One approach to define a sequential memory could be to extend a definition of
a static memory. Consider the following definition of an ideal static autoassociative
memory for binary patterns (Kohonen 1988):

(i) An ideal autoassociative memory is a system which holds copies of distinct
input signal sets ®) p = 1,2, ... k in its internal state, and produces the copy
of a particular set z(") = ( Y), éT),..., T(f)), r € 1,2,...,k to the outputs,

whenever (in the recall mode) the inputs are excited by a set of signals x =

(&1,&,...,&) in which a specified subset of the values & matches with the
corresponding subset of §Z(r).

This could serve as the basis for a definition of an ”ideal” sequential memory. The
following definition has been the basis for the present work:

(ii) An ideal sequential associative memory holds copies of sequences of instanta-
neous patterns, defined as in (i),
@9 p=1,2, ..k s=50,51,..5n
in its internal state, where s is an implicit state number, and produces a copy
X(r,s) — m(rO,sO), . m(rz’,si)7 . x(rj,sj), . 'Z.(rm,sm)
of a particular stored sequence of instantaneous patterns, whenever, in recall
mode, the net is stimulated with a sequence of instantaneous patterns
y(ws) = y(""’s‘))...y(“i’si)...y(uj,sj)
where, in a specified subset of the sequence Y, ;) each member y(y; s;) matches
a specified subset of each member x(,; s according to (i), in the sequence
X(r,5)- An ideal temporal associative memory could then be defined based on
(ii) where the relative time between different instantaneous patterns and the
absolute recall speed is also considered.

(iii) An ideal temporal associative memory holds copies of sequences of instanta-
neous patterns, where each instantaneous pattern is a set of signals,
2P p=12 . kt=to,t1,...tn
in its internal state, where t is an implicit time stamp, and produces a copy
X(ra"—) = a’;(TO)"—O)7 ey :L.(T'i,‘l'i)’ ‘”71-(7'.7'a7-.7')7 ey :L-(T'm,Tm)
of a particular stored temporal sequence of instantaneous patterns
X(Tat) — x(rovto), ey w(Ti’ti)’ ey :L-(T]'vt]')’ ey x(Tm,tM)
whenever, in recall mode, the net is stimulated with a temporal sequence of
instantaneous patterns
Y(uvt) = y(U'OvTO)___y(uivTi)___y(ujvTJ')
where, in a specified subset of the sequence Y (®t) each member y**) matches
a specified subset of each member z(":t)  according to (i), in the sequence
XY in monotonic order, and
to—t; =T - (T() —Ti),to —tj =T- (7’0 —Tj),...;T € R.



In most circumstances, however, we are not interested in reversed recalls. Thus we
may limit the produced sequence of sets to those where T ; 0, i.e. a sequence would
only be recalled in the same order as it was stored. As a further restriction, in
the current study we have focused on sequential memories according to definition
(ii). Thus it is only the order of instantaneous patterns in a sequence that is
essential. In the following examples some sequences; S1, S2 and S3; are given.
Each instantaneous pattern in these is a character, or, as in examples €2 and e3 a
pair of characters. Assuming that we have an ideal associative memory available, a
sequential memory may then be implemented under one of two trivial constraints.
Constraint 1, each instantaneous pattern is unique. Two sequences, S1 and S2, are
stored in the associative memory, such as:

(el) S1
S2

142857142857. ..
093093...

Here any of the sequences S1 or S2, both infinitely long, may be uniquely produced
if a stimulus pattern y(u,t) matches any element of the pattern sets 1,2,4,5,7,8 or
0,3,9. Constraint 2, we have the possibility to store time or equivalent contextual
information together with each instantaneous pattern x(p,t),(Rosenblatt 1962):

(es) S1 = (a,0),(b,1),(a,2),(c,3),(a,4),(d,5)

S2 = (e,0),(c,1),(e,2),(b,3),(e,4),(b,5)
Each instantaneous pattern, in this case, is made unique by giving it an explicit
time tag, but any pattern may occur just once in a specific context or at a specific

time. If the sequences S1 and S2 in (e2) above are learned and a third sequence,
S3, such as:

(e3) 83 = (¢,0),(d,1),(a,2),(d,3),(c,4),(a,b)

is added, the sequences S1 and S3 could not be unambiguously recalled because
the instantaneous pattern (a,2) is no longer unique among the sequences S1, S2
and S3 because it occurs both in S1 and S3. Another drawback of making each
instantaneous pattern unique is that it becomes hard for the network to make
generalizations. Let, for example, a temporal network learn the following sequences
S1 and S2:

(e4) S1 = ababcde
S2 bcabcab

When storing such sequences as S1 and S2, in which an instantaneous pattern ”a”

is always followed by a ”b”, it is possible to generalize about this. A constraint
that makes each instantaneous pattern to be unique, i.e. where a network may only
use pattern information from the previous timestep, will be hard to fulfill. The
basic problem in temporal networks is how to deal with the history. A prediction
must normally use data older than t minus 1. The property of a set of sequences
telling how old the data must be for one to deal with it, in order to specify each
continuation uniquely, is here called context length.

Definition:

The context length of a sequence is the maximum age of the data required to
specify each continuation uniquely.

For example: The sequence ”7142857142857...” (fraction part of 1/7) has context
length 1 but the word "mathematics” has context length 4. Now, consider the
differences between the properties needed for sequential pattern classifiers and se-
quential pattern generators. For classification purposes, e.g. phoneme recognition,



the problem consists mainly of detection of specific features in the input stream, fea-
tures that are often invariant to some properties of the input signal. One property
to pay attention to in recognition circumstances is whether automatic segmentation
of the input stream has to be managed. Such as:

"CANYOUREADTHIS" vs "CAN YOU READ THIS"
"SEGMENTSMAYBEAPROBLEM" vs "SEGMENTS MAY BE A PROBLEM"

This is a well known problem in, for example, recognition of continuous speech.
There are certain languages, like Finnish, where it may be less accentuated due
to consequent stress of the first syllable of each word. The stress of a word is,
however, not yet a property to be treated in an efficient manner in automatic
speech recognition. (Elenius K., personal communication). For pattern generation
purposes we may pay attention to how the sequence is activated and how tolerant
the generated sequence has to be against errors in the triggering stimulus. For low
level pattern generators in biological motor systems, it has been shown (Grillner
et al 1987) that basic spinal pattern generators may be driven by a tonic stimulus.
This has also been shown in simulated models of spinal pattern generators (Lansner
et al 1989). Figure 1 shows a model of the Lamprey swim generator that has been
simulated.

Figure 1: The spinal swimming rhythm generating network of a Lamprey. "E” are
excitatory interneurons that drive the motorneurons. " CC” are interneurons that in-
hibit the opposite side. "L” are lateral interneurons that terminate activity on the
active side. ”MN” are motorneurons and "RS” are reticulospinal neurons. The retic-
ulospinal neurons are driving the spinal network. Filled circles designate inhibitory
synapses and unfilled circles excitatory synapses.

For temporal motor control mechanisms we do not yet know what kind of ac-
tivating patterns are used. It is however reasonable to believe that the activating
pattern sequences are quite short. In fact, the start condition could be just a single
pattern, like a goal coordinate in a reaching movement. At a certain level in the
system this may reflect how the movement is initialized. In the following we focus
on the problem of generating long sequences from short activating sequences.

4 Different methods for temporal sequential net-
works
We introduce by giving a short review of some previously studied methods for se-

quential pattern recognition and completion. This is in no way a complete review.
It is an illustration of some methods which differ from the approach in the present



work. A state machine built round an associative memory is studied by Koho-
nen. Qutputs from the associative memory are fed back through delay lines to the
network. Delayed replicas of the outputs will be associated with incoming stimuli
(Kohonen 1988). Methods and theories from adaptive signal processing that are
used for prediction of stochastic processes are also applicable to neural network
models. The weights may be calculated using the least-mean-square (LMS) algo-
rithm or, e.g., Kalman-filter algorithms (Trvn 1988). In another model, that is
called short term memory (STM), each unit remembers a small history of its in-
put signal by letting the signal pass a convolute giving an exponential decay (Trvn
1988). Each signal passes a STM-loop. There are several STM-loops in parallel and
the outputs from each STM-loop are weighted into a decision net that selects out-
put patterns that are most close to the valid patterns. The Hidden Markov Model
is a kind of state machine where the weights are interpreted as transition proba-
bilities. A HMM may be trained using the forward-backward algorithm (Waibel
et al 1987). A Jordan network is a way of implementing sequential association in
back propagation networks by adding feedback and a set of recurrent state units.
(Jordan 1986), (Massone, Bizzi 1989). Another way to use back-propagation for
temporal processing is to use ” Time Delayed Neural Networks (TDNN’s)”. TDNN
is often used to designate multilayer backpropagation networks where each unit has
multiple weights with different delays. These units may however be used with other
learning rules (Waibel et al 1987), (Lang, Hinton 1988). The sequential or temporal
networks mentioned above may be used either for pattern recognition or pattern
generation. Most of them have in common that they may be seen as implementing
a type of predictor

ﬁ(t) :F(S(t):ﬁ(t_1)5'--7ﬁ(t_k)) (1)

where the estimated pattern at time t is solely a function of the stimulus at time
t and k steps of predicted pattern history. This is, of course, not true for models
where units with different input delays, as the TDNN units, are used to sample the
stimuli. The other extreme in that case is

Pt —c) = F(s(t),s(t = 1),...,s(t — k) 2)

where the estimated pattern at time t-c is solely a function of the input stimuli.The
constant ¢ is normally chosen between 0 and k. For classification purposes the
estimated pattern may be a decision, like hyphenate vs not hyphenate. A variant
of the latter is

Pt —1,. ..t —k) = F(s(t),s(t —1),...,s(t—k)) (3)

where a sequence may be recognized as a whole. A network model for recognition
of temporal patterns that corresponds rather well to this predictor principle has
been studied (Tank, Hopfield 1986). Stimuli are projected on a network through
continuous delay functions that also make a compression of information in time .

5 Methods and simulation results
In this section we present the models developed and some simulation results.

5.1 Networks with delayed inputs

The basic method for implementation of sequential memories studied in this work
is the addition of delayed stimulus connections to an autoassociative network, i.e.



temporal structure is transformed to a spatial one (figure 2). With this architecture
we will get the predictor

ﬁ(tat - ]-7 T 7t - k) = F(S(t)as(t - 1)7 . '7S(t - k):ﬁ(t)7ﬁ(t - 1)7 T 7ﬁ(t - k)) (4)

where the sequence within the whole context length k is predicted from both k steps
of predicted pattern history and from k+1 steps of stimulus. Assumptions: the rate
of stimulus change is slow compared with the relaxation time of the network. The
delay lines has equal delay characteristics.

t-1 t

< "
< D <+

Output Stimulus

< D

Figure 2: Picture illustrating the principle for temporal to spatial conversion. The left
figure shows a fully connected associative net, here represented by 4 neuronal units. A
part of the net will see a delayed replica of the input signal (t-1). Outputs from some
of the units will be mixed with the input signal. The right figure shows the same in a
more formalized way. A network population is represented here by a rectangular box.
An oval with an arrow shows that the population is recurrent. An arc binding two
network populations together means that all units in one population are projected on
all units in the other population in the direction of the arrows.

The associative network model chosen is of Bayesian type (Lansner,Ekeberg
1989). There are several reasons for choosing a Bayesian network. The learning
rule is fairly simple and biologically reasonable. The Bayesian criterion is also con-
sidered to be the best in comparison with other common classifiers as Perceptron
(Linear), Least Mean Square and Sigmoid (Barnard, Casasent 1989). The learning
problem in these types of Bayesian networks is mainly a question of collecting statis-
tics. The weights are computed from mutually conditional probabilities (assuming
independent patterns), such that:

In P(j|.i) I P(j&i).

P(j) P(i)P(j)
The method used in this work for collecting relevant statistics is an incremental
learning rule (Ekeberg ., personal communication). The probabilities are estimated
without prior knowledge of the patterns by using exponential convolutes and thus
will be good estimates for both stationary and non-stationary processes. In the
notation used here Sj(n) is sample value for unit j when the n’th pattern is presented.
Pij(n) is the compound probability that unit i and j are simultaneously active. t
is a time constant that is chosen large enough to smooth out short term variations
but short enough to follow nonstationary processes.

Wi =

(5)

(n) _ pn)
S;7 — P

(n) | oln) _ pln)
B = pm 4 2 Si S = hy

T

Pi(g'n+1) = pi(f) + (6)

T



A problem with these fast and simple learning rules in one layer nets is that prob-
abilities are assumed to be pairwise independent. This means that certain patterns
are not distinguishable. It is possible to deal with dependent patterns by using
multilevel nets. E.g. a one level Bayesian network could be enhanced by complex
nodes (Lansner, Ekeberg 1987), i.e. ”interneurons”, working as feature detectors,
that are using a different and more complicated learning rule. In this work there has
been no attention paid to this possibility. Here, only one layer nets with incremen-
tal Bayesian learning are considered. We assume that the problem of independence
has been solved before the input is given to the Temporal Associative Network
(TAN). In a network where just one delay step is used,as shown in figure 2, it is
possible to store sequences with a context length of one. To recall sequences in this
network, output from the part of the network that is stimulated without delay is
fed back and mixed with the delayed stimulus. To manage longer context lengths
the most obvious thing would be to add more stimulus delay lines thus spreading
the temporal information over a larger network, figure 3. The outputs from the
subnets is coupled to the delay lines and from there propagated. This is refered to
here as output feedback. The degree of output feedback is not critical but some
tests showed rather good results when the outputs and the inputs influenced the
propagated data with one half each. If the output feedback is too large the network
will have hard to change a faulty decision. In the corresponding way the net will
be sensitive to noise when the influence of the inputs is too high.

Figure 3: A network with 5 delay steps that could manage context lengths of 5. The
stimuli is propagated in the direction of the vertical arrows. After the network has
reached a state of relaxation it produces an output from each neuronal population
(the rectangles). Outputs from the neuronal populations are fed back to the stimulus
propagation line as the arrows going from top of a rectangle and leftwards show. These
connections are here called output feedback .

The storage capacity (Zmax) in an associative network relates to the number of
units (N), where ”In” is the natural logarithm, as (Lansner, Ekeberg 1985):

Znaz = O () ™)

When storing sequences of patterns in a network, configured as in figure 2, that
could manage a context length of one, it would be expected that the maximum



number of sequences of length ”1” possible to store would be

N2
Segmaz = O <(l;(+)]_)> (8)

The assumption behind this is that each instantaneous pattern in the sequence is
coded as a single unit. If this is the case, the first and last step of each sequence will
not generate any weight change, i.e. each pattern in a sequence is associated with
its follower, except, of course, for the last one. When we add more delay lines to
manage contexts of length ”¢”, as in figure 2, we would, with the same assumption
as in the previous example, expect the maximum capacity to be decreased to

Se =0 M (9)
Gmaz = l+c—2

When we need to treat long context lengths, with this model, very large amounts
of weights are required. The number of weights will increase with the square of the
context length ”c” ;where ”n” is number of units in a single pattern:

Wiot = ((c+1)-n®) = (c+1) -n) (10)

6 Matrix reduction due to time invariant relations

When looking at the connection matrix (figure 4) one could expect some symmetries
to be found due to dependencies between patterns at different timesteps. A matrix
element like [t-3,t-2] that connects output from timestep (t-3) with inputs at (t-2)
should be the same as the element [t-4,t-3] etc.

t-5
t-4
t-3
t-2
t-1
t

output:

T t1 -2 t-3 t-4 t-5 INPUtS

Figure 4: The connection matrix that connects different timesteps with each other.
Observe that the elements of this matrix are also matrices which make the network
at each timestep recurrent. The interpretation is that the outputs from timestep t-3
connects to inputs at timestep t-2 and so on.

If the symmetry principle is correct then we would get a matrix like the one in
figure 5. The connection matrix will have a diagonal structure where each element,
representing the set of weights projecting one population on another, is constant
along a diagonal. Due to this symmetric structure the number of unique weights
is reduced to increase linearly with the context length instead of growing with the
square.



output:
&

W\

inputs

Figure 5: Due to invariance between dependencies at different timesteps the matrix
will show a diagonal structure.

By utilizing the diagonal structure of the connection matrix it would be possible, in
a simulated network model, to use a smart lookup of weight values. If this is possible
to realize in a simulated model it is still, however, not very attractive because it
is still computationally expensive and totally unplausible from a biological point
of view. It would also be rather unpractical to implement this model in hardware.
Perhaps it could be a creative approach to reason in the following way. The multiple
sets of equal weights along the diagonals are redundant in the sense that, once a set
of weights has been used in the relaxation it is possible to ignore that set at further
timesteps. As a consequence, we could then try to simply remove the redundant
part of the matrix as shown by figure 6. This operation would also make the number
of weights linearly proportional to the context length, such that:

W/, =m*=n)-(2-c+1) (11)

t-5
t-4
t-3
t-2
t-1

output:

T 112 3 14 -5 ihputs

Figure 6: Assuming that the multiple occurrences of equal weight sets over the diag-
onals are redundant, we could simply remove them (grey). Thus the total matrix will
be L-shaped and the amount of weights will grow linearly with the context length.

A network with connectivity reduced according to the hypothesis that multiple sets
of time invariant weights are redundant is shown in figure 7.



Figure 7: A TAN (Temporal Associative Network) with 5 delay steps and "redundant”
connectivity removed.

To characterize the performance of the present model and to investigate the effect
of removing the "redundant” part of the matrix some tests have been performed.
figure 8 shows some results from tests that have been run using random sequences
of characters as input. Each character has been coded as a unique active unit.
By coding each character uniquely we are sure that the characters themselves are
pairwise independent. Tests where distributed character coding is used have also
been performed with reasonable results on the larger nets but they are not shown
here. The same set of training and test data has been used for all the following
tests.

Full Connection Matrix Reduced Connection Matrix
100 100 A
80 80 T

$ 60 $ 60
; :
g 40 - 4+ 6x7 units g 40 - <+ 6X7 units
o - 6x14 units g . ~®  6x14 units
= & 6x21 units = & 6x21 units
3 20 A <~ 6x42 units 3 20 == 6x42 units
S S

O LI T T T T T T T T T T 1 O 1 - T T T T T T T T T T 1

0O 10 20 30 40 50 60 0 10 20 30 40 50 60
# Sequences, L=12 # Sequences, L=12

Figure 8: Comparison of behavior between a TAN with full connection matrix (left)
and a TAN with reduced connection matrix (right). The same random character
sequences has been used in both the tests. The vertical axis shows the percentage of
sequences that has been 100 been stimulated with the first three steps of the sequences
learned.

When completion tests are run on the net with full and reduced connection matrix
we see, as figure 8 shows, that the nets behave almost equivalently. As a matter
of fact, the nets with reduced matrices perform slightly better except for the small
net with 42 units. The results above indicate that the principle for temporal to

10



spatial conversion, that is used here, could be a useful method for implementation
of sequential associative memories.

7 Left-Right context

One reason for using a network that is recurrent in the time domain, as we did in
the previous section, is that this makes it possible to do pattern completions within
the whole manageable context length for the net, i.e. we not only may predict
the future from old data, but also tell what the past should have been, based on
recent data. Earlier we defined the context length for a sequence as the maximum
number of timesteps required to specify each continuation uniquely. The context in
his definition could be designated ”left-context”. In the same way, ”right-context”
could be defined as the number of steps required to specify a unique history. It is,
of course, totally irrelevant to speak about left and right in the time domain but,
if we associate time with, for instance, sequential reading of text, which in most
languages is performed from left to right, we get a useful interpretation. A more
general expression would be preand postcontext. Seen from a statistical point of
view pre- and post-context may be compared with pre- and post-dictors that are
used to determine the correct value of a signal based upon passed history and future
(Parsons 1987). Pre- and post-contexts have the same size for any sequence but this
does not imply that this amount of timesteps is necessary for determination of the
sequence uniquely. The context length defines the minimal number of delay steps
we need to generate the sequence. There may be many parts of a sequence shorter
than the context length that uniquely specifies it. Assume that a network similar
to the one in figure 7, but with 10 delay steps, has learnt the following sequences
whose context length is 4 :

S1 = MATHEMATICS
S2 = MATERIALLY
S3 = MATRICULATE

If the net is stimulated with e.g. "MAT” it will not be able to unambiguously
choose a continuation. The net will choose one of the sequences anyway. Consider
the following stimulus-recall process (”.” means empty input) :

Stim = MAT. Recall = MATH
Stim = MAT.. Recall = MATHE
Stim = MAT... Recall = MATHEM
Stim = MAT...L Recall = MATERIAL
Stim = MAT...L. Recall = MATERIALL
Stim = MAT...L.T Recall = MATRICULAT
Stim = MAT...L.T. Recall = MATRICULATE
By stimulating the same net with "........ ICS" it will recall "MATHEMATICS",

i.e., by utilizing the right-context (or post-context), a temporal network will be
able to recall a whole history or ”cause” when it is stimulated with a part of a
sequence or change its decision when additional input is available. For a sequence
generating network this is a valuable property to prevent noise in input to give
errors in output. Experiments like these has been performed on human beings for
the English language (Shannon 1951). It was found that the predictor and the
postdictor have the same characteristics but the predictor is slightly better. It
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means that it is somewhat easier to guess a word when given the beginning of it
than given the end. Actually, a network with temporal recurrency, like the one
here described, could equally well be used to recall a sequence backwards if the
delay lines were reversible. Biological evidence for reversible temporal networks are
currently unknown, but for certain problem domains this could be a useful property.
Take for instance a labyrinth learning network that has learnt a sequence of turns to
find its way across the labyrinth. By reversing the direction of recall and reversing
the direction of turn the network would find the reverse way across.

8 Feedforward classification of old data

To predict time sequences is somewhat like walking in a rather well-known land-
scape. Often we may know where we are and where to go by just looking in the
closest environment. But, sometimes the closest environment is not enough and we
have to look around for distant landmarks. When we look in the close environment
we sometimes take a faulty decision, but soon we may recognize a distant environ-
mental feature that makes us change our mind and choose a new direction. This is
easy, but if we have misinterpreted a distant landmark we may go several kilometers
in the wrong direction. In a sequential associative network it could, referring to the
analogy above, be reasonable to assume that we may use the feedforward principle
for old data, i.e. ”distant landmarks” and the recurrent principle for recent data, i.e.
”close environment”. The network will then be robust in the recurrent part where
data are highly correlated and an error in stimuli may cause great errors in the de-
cided output. When the stimulioutputs mix is propagated to the feedforward part
of the network the output decided is no longer possible to change. To investigate if
the feedforward principle is feasible with the Bayesian learning rule for predictions
of sequences some tests has been done on feedforward connected networks (figure 9,
Left).

As can be seen from tests on a feedforward network (figure 9, Right) the capacity
is about half of the capacity for a recurrent network (figure 8), with the same set
of data. This is expected since there is half the number of connections and the
stimulus is not noisy. A network of this type has to make correct decisions at each
timestep, otherwise the faulty patterns will be propagated and be the basis for new
decisions. An attempt to decrease the number of weights without loosing too much
capacity or the left-right context principle is to use recurrency for recent data and
feedforward connectivity for old data as figure 10 shows. The capacity is slightly
less than for the fully recurrent net. The reason for the capacity to be that high
here may be explained when one considers how autocorrelation functions usually
behave as a function of time difference. Since most sequences probably have a rather
short context length, the feedforward weights are only needed to resolve just a few
ambiguities.
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Figure 9: (Left). A temporal network with feedforward temporal connections. (Right).
Results from completion tests on a feedforward temporal network.

Recurrent+Feedforward
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Figure 10: (Left):A temporal network where recent timesteps are recurrent and older
timesteps are feedforward only. (Right): A few results obtained with the combined
network. These results are only slightly worse than for the fully recurrent network.
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9 Coarse summation of old data

If we consider the consequences of being able to manage very long sequences in
temporal neural networks we will probably come to the conclusion that it is rather
unrealistic to have a temporal resolution that is linear with time. We would get
very large connection matrices even when using the symmetry and feedforward
principles investigated above. Many of the weights would be unused due to small
correlations between data with large time differences. As an example we can look
at the following expression “the correlation is low”. If we consider the temporal
connections between ”"the” and ”low” it should be quite clear that the exact time
when ”the” occurred compared with ”low” is less important compared with ”t” and
?e” in "the”. When looking at perception in biological systems we know that the
threshold for a difference in sensation relates to the change in stimulus as (Weber’s
law) (Kandel 1985): k=DS/S, i.e. the threshold for experience of a change in
stimulus is proportional to the size of the stimulus. In this way our sensations
are proportional to the logarithm of the magnitude of the absolute stimulus. A
hypothesis about temporal resolution could then be stated in the same way

AT

AResolution = k - T

(12)
which would give a resolution that is a logarithmic function of time distance. One
way of implementing a logarithmic-like resolution in a network like the one we
havedescribed here, would be to sum the history over a number of time steps that
grows exponentially with the ”subjective” time distance. Figure 11 shows some
examples of this summation of history that we will now refer to as coarse summation.

[A]i]1[2[2]2[3[4[4] 12t
[(f1z]2[3]5 8 m[7[26] 15
[1 2] 4] 8]16]32]64]128]256] 20"

) "subjectivet"

1 2 3 45 6 7 8
Figure 11: The principle for coarse summation of propagated stimuli/outputs to obtain

a logarithmic-like time resolution. The number of sum steps is an exponential function
of the "subjective” time, here with bases 1.2, 1.5 and 2.0.

In an implementation of a temporal network that uses coarse summation it is neces-
sary to choose the base for the exponential function in accordance with the statistical
properties of the data. To see if the hypothesis about logarithmic resolution could
be reasonable anyway, some tests were run on a network configured as in figure 12,
with 2 as a base for the exponential summation.
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Full Matrix+Coarse Sum
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Figure 12: (Left) A temporal network that achieves a logarithmic-like resolution versus
age of data. The varying resolution is achieved by coarse summation of old data. The
coarse summed data is feed forward weighted into a fully recurrent net that spans over
a few timesteps. (Right) Results from some tests with random sequences on some nets
with coarse summation.

Capacity degradation for different coarse summations
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Figure 13: This diagram shows how the capacity degrades when different type of
coarse summation is used. The capacity for perfect recall is, in this test, the same
for all, but they show different degradation when this maximum capacity is exceeded.
(a): Unit on if any input is on, i.e. like a logical OR-function. (b): Average, i.e. the
sum has been divided with the number of coarse summed units. (c): A unit is on if
most of the units are on, i.e. an average with a threshold. (d): The summation unit’s
output value is just the sum of its inputs.
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Reduced Matrix+Coarse Sum
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Figure 14: (Left) A temporal network with logarithmic-like time resolution where
the coarse summed stimuli is only feedforward weighted into the recurrent part of a
network with reduced connectivity. (Right) Results from tests with coarse summation
and reduced connectivity.

A question that arises is how the stimuli has to be summed to give the best perfor-
mance. If we assume that the coarse summed network works according to the same
principles as the feedforward network described above, then the best summation
principle would probably be one were the new weight values match the values in
the feedforward network as much as possible. To achieve this, the output from a
coarse summation unit could be just a simple sum of its inputs. A strange thing
with this method is that the outputs of the summation units would exceed one.
The output from a unit in the Bayesian network model that is used here reflects the
probability for this unit to be active. We may however, see these summation units
as help units that makes us collects statistics for several units at the same time.
Results from a test run with some different types of coarse summation is shown in
figure 13. This test indicates that the best type of summation to use is either a
simple OR-function or a simple sum.

Completion tests on networks with coarse summation of old data showed quite
good results when the sums where coupled to a fully connected network, figure 12
(Right). Corresponding tests on network where the recurrent part had a reduced
matrix show, as can be seen in figure 14, even a slightly better result.

10 Sequence capacity for different architectures

The goal with this work was to find a useful model for temporal association in
Bayesian networks to be used in simulation studies of temporal phenomena. Thus
it is important to consider the model characteristics such as, capacity versus the
number of units and number of weights.

To make possible such a comparison all tests have been run with the same ran-
dom training and test sequences of characters with unique unit coding of characters.
Each sequence in the test had the length 12. The number of neuronal populations
were 6, i.e. the manageable context length would be 5, except for the coarse summed
network that could possibly manage a context length of 9.

As the basic principle for temporal association investigated here is to use delayed
inputs for conversion of temporal information to spatial, there may be different
performances expected depending on how the spatial matrix is connected due to,
for instance, time invariance effects.
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The number of units in these models have been kept the same. A ”unit” here
designates everything which has its outputs connected to other units via weights.
Some of these units are, for the feed forward nets, just used as input units, or for the
coarse summed networks as stimulus summation units.To vary the number of units
in a network model, the width of each pattern and the repertoire of the random
sequences were varied.

Figure 15 shows the capacity plotted as number of sequences versus number
of units for the different models investigated in this work. It should be observed
that the theoretical capacity is based on experiences from static content addressable
memories (CAM). It may be a surprise that the theoretical capacity is lower than
most of the capacities measured. There is, however, nothing strange in this. What
really matters is that we have the same proportionality. The theoretical capacity
is based on empirical results for independent patterns with a sparse activity rate of
about ltemporal examples we have both dependencies between the patterns and a
varying rate of activity.

Capacity for different connectivity models

40 A
30 1
~ = (a)
5 -+ (b)
2620 . = (c)
g < (d)
= - (e)
F 1 - 0
0 T T 1 Units
0 100 200 300

Figure 15: Capacity versus number of units for some temporal network models with
different connectivity principles. (a): Fully connected recurrent network. (b): Recur-
rent network with reduced connectivity due to symmetry. (c): Network with feedfor-
ward temporal information only. (d): Mixed recurrent , fully connected with coarse
feedforward summation (e): Mixed recurrent, reduced connectivity, with coarse feed-
forward summation (f): Theoretical capacity. based on static CAM results.

11 Sequence capacity versus number of weights

In the previous plot in figure 15 we looked at capacity versus number of units in
each of the tested network models, but, what really makes the cost, at least, in
artificial neural networks, is the number of weights. To check which model uses its
weights in the most efficient manner the same data as above is used, but instead the
number of recalled information bits versus the number of weights for the different
models is investigated. The information content of a recalled sequence is designated
as the ratio between the number of possible full length sequences and the number
of possible sequences that are used as input for recall. The number of information
bits in a recalled sequence is just the two-logarithm of this ratio. We get the total
number of information bits (I) as the difference between the two-logarithms for the
number of possible sequences and the number of possible input sequences (R) times
the number of stored sequences (S).

I = S . (10g2 (Spossible) - 10g2 (Rpossible)) (]‘3)
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This is based upon corresponding calculations for static CAM capacity (Lansner,
Ekeberg 1985). Figure 16 shows how the recall capacity per weight differs for the
different architectures. As these test indicate the weights are much better utilized
when connectivity is reduced than with fully connected networks. The criterion for
correct completion in this figure is that at least 95 tests above show a dip in the
capacity to e.g. 90 100 figure 16 were plotted, the first dip in capacity was construed
as the capacity limit.

Information recall for different architectures
2000 A

Information bits

0 T T

20000 40000 60000 80000

o

Figure 16: Capacity as recalled information per weights for some temporal network
models with different connectivity principles. (a): Fully connected recurrent network.
(b): Recurrent network with reduced connectivity due to symmetry. (c): Network
with feedforward temporal information only. (d): Mixed recurrent, fully connected
with coarse feedforward summation (e): Mixed recurrent, reduced connectivity, with
coarse feedforward summation. (f): Feedforward only, as in (c), but with 10 delay
steps.

12 Discussion

We may ask: Is there any special reason to choose a temporal model that spreads the
temporal information across a spatial network? Yes, this method not only gives the
system the possibility to draw conclusions out of the input data from the history but
also to ”change its mind” when new inputs show that an earlier decision was wrong.
Thus, the network will be robust against noise in the input and generate correct
sequences also when faulty decisions sometimes are taken. Using the feedforward
principle for old data means that the network will be unable to do this.

There are some aspects of temporal association that have not been dealt with in
the present work: speed of recall, recall in reverse order, time independent sequen-
tial, logical reasoning and semi-sequential processing that may run independently in
parallel except for certain rendezvous. It has also been assumed that the sequences
do not overlap to much for a one-layer network.

Speed of recall and recall in reverse order are both represented by the constant
T given in the paragraph ”Definition of the temporal problem” above. When T is
less than one, the recall speed is greater than the learning speed and when T is
greater than one, the recall speed is lower. Further, when T is negative the order of
recall is reversed. Considering the varying speed of recall, it seems to have relevance
in biological systems. When we have learned for example a sequence of movements,
the speed may be varied within certain limits. A reversed order of recall may not
be equally relevant in biological systems. It is common that people have problems
when trying to do certain tasks in reverse order. Try for instance to rattle off the
alphabet backwards!

When looking at motor systems it is rather unrealistic to imagine that the
performance of an action could be reversed by just reversing the order of muscle
stimulation. To reverse a movement a completely different strategy has to be taken
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with different muscles involved etc. This does not imply that this should be the
fact in all levels of the system. It is possible that an action stored at a high level in
the system, where just model coordinates about the outer world is treated, may be
recalled in a reversed order.

The actual movements are then planned from these coordinates and different
learned strategies would then be used in different directions. When one consider
coarse summation as a method to manage long context lengths there are a few
questions that may arise. (a) Is this a relevant method? (b) Is this in some sense
biologically relevant?

(a) Further tests of this method on sequences with long contexts has to be done
in combination with a more thorough statistical analysis. If looking at imple-
mentation of such a method it may also seem impractical to propagate and
sum stimuli/outputs in the way we do here. Some function that approximates
this behavior is probably to be preferred.

(b) There is currently no indication that coarse summation, as it is described
here, may take place in biological systems. If such a mechanism exists it is
more probable that it is based upon, for instance, concentration changes etc.
in biochemical reaction systems.

All the tests in this work have been run on random sequences of characters. Further
investigations have to be done on structured sequences of data, i.e. sequences where
it is possible to define a grammar; as well as on sequences with distributed activity
in the instantaneous patterns. Investigations have to be done with noisy start
sequences and the capacity convergence for large networks has to be checked as
well.

13 Conclusion

The studies done in this work indicate that efficient sequential associative memories
may be built using one layer Bayesian networks, where temporal information is
transformed to spatial information using stimulus delay lines. The reason for this
principle to be affordable is that, due to time invariant relations between patterns,
the weight matrix has a structure with multiple symmetries where ”redundant”
connections may be removed. The number of connections will then grow linearly
with the maximum context length managed by the network.

By using recurrency in the time domain, a temporal network will be able to
tell the next continuation of a sequence and at the same time change its previously
taken decision when new contradicting stimuli arrives. The results indicates that
the best information capacity per weight is achieved when reduced connectivity is
used. Tt can be used either for a network that is fully recurrent in the whole context
length or in combination with feedforward and coarse summation to manage longer
context lengths.

As aresult of this work a Temporal Associative Network (TAN) software package
is available. The package is written in ANSI-C and is instantiable with the following
parameters: numbers of units in a pattern, number of neuronal populations, number
of fully connected steps, number of steps with reduced connectivity, number of steps
with feedforward connections, number of feedback steps, number of normal input
steps and number of coarse summed stimuli steps.
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