
1. INTRODUCTION 1

A Study of Process Modelling
using Artificial Neural Networks

Roland Orre and Anders Lansner

SANS – Studies of Artificial Neural Systems

NADA – Dept. of Numerical Analysis and Computing Science

Royal Institute of Technology, S–100 44 Stockholm, Sweden

Abstract

We model a part of a process in pulp to paper production using feed forward connected neural
networks. A set of parameters related to paper quality is predicted from a set of process values.
The predicted values are results from laboratory experiments which are time consuming. We
check for irrelevant inputs and we manage with training sets that are considered small. The out-
put vector is separated into single values which are predicted on different architectures adapted
to each output. A strategy that continuously adapts the process model seems to be useful. In
this work the backprop learning algorithm been used.

1 INTRODUCTION

The general problem is to model a process P as vector transformations. The actual process that
is modelled has as inputs a known parameter vector x, an unknown parameter vector y and a
random disturbance vector d. The process’ output vector o is thus

o = P (x, y, d)

The process P may have a memory and be a function also of its parameters and output history
but for simplicity we assume that it is not. The problem is to make a model that can predict the
process’ output vector o when only the vector x is given. The actual vector x is however, also
unknown. Due to physcial measurement errors, manual input errors and approximation errors
the input vector x is also an estimate. The modeled vector output thus becomes

ô = P̂model(x̂)

The specific problem in this study was to investigate how some measures of pulp quality could
be predicted. These values are results from laboratory experiments and should be predicted
from a set of input parameters that are obtained from quick automatic experiments and some
additional information about the process. The laboratory measurements that are predicted are
csf, density, elongation, tear and tensile with the emphasis on tear and tensile.

In the following will a process signal refer to either a process input or output value.

2 METHOD

The computational method developed for this study uses feed-forward artificial neural networks

with the error back-propagation learning algorithm. This algorithm, which is most often called



2

just back-propagation, will not be described here. There are several text books available on this
subject. A theoretical textbook that describes this and other neural network principles is for
instance “Introduction to the Theory of Neural Computation” [HKP91]. General introductions
to the field are [MRtPRG86], [RMtPRG86], [MRtPRG88], [Neu90], [Nie90] and [NI91].

The back-propagation learning method is just one of several artificial neural network algo-
rithms which are available today. The reasons for selecting this method here is that it is both
well understood and straightforward to use. It is also, for these reasons, the method that has
become the most used neural network method in the industry today.

2.1 Tools and Environment

The tool that is used for the back-propagation network learning and execution is “Aspirin/ MI-
GRAINE” release V5.0 [Lei91]. This is a set of programming tools for neural network simulations
which has been developed by an internally funded research effort at the MITRE Corporation.
These tools include a compiler for a neural network description language “Aspirin” and a user
interface “MIGRAINE”. The software is written in C and the Aspirin compiler generates C code
as output that is automatically compiled and linked together with the MIGRAINE interface to
create an application program that runs the specific network architecture(s) that is described in
the Aspirin file.

The MITRE corporation decided to release this software March 1988 from V4.0 free of
charge, publicy available. It may be freely used and modified for research and development
purposes. The only requirement is that it is briefly acknowledged in any research paper or other
publication where this software has made a significant contribution. If the software will be used
for commercial gain the MITRE Corporation has to be contacted for further conditions of use.

The Aspirin/MIGRAINE software package is easily installed and runs on most UNIX system-
s. Tested systems are for instance Apollo, Convex, DecStation, IBM RS/6000, 486/386(System
V), HP 9000, NeXT, News, Silicon Graphics and Sun. It also supports some coprocessor boards
that can be added to a UNIX host, at the current writing these include i860 boards and iWarp
Cells. During the current writing it was announced that Aspirin V6.0 is available.

For diagram generation the “GNUPLOT” V3.2 interactive plotting program has been used.
This package is also free of charge and installs on all UNIX systems plus some others.

2.2 Method Development

The investigations performed in this report have resulted in the development of a method for
preprocessing of data, doing an iterative search through different network architechtures and the
removal of non significant network inputs. This code is written in the language scheme ([WC91])
and has been made so that this is the only interface needed to run the learning and prediction
through MIGRAINE on a UNIX work station.

2.3 Specific Settings Used

To make it easier to repeat the experiments that have been done in this study, a few words
about some specific control parameters, especially to the Aspirin/Migraine interface. A typical
command line for learning would be “command -I 1000000 -l -d df -F net-name -t 10000 itok
0.05 -s 10000 -a 0.05 -F net-name save-name”. For other parameters like inertia, default values
have been used.

command This is the name of the compiled and linked MIGRAINE code for a specific dec-
laration file. For a two layer net with seven inputs, ten hidden and one output this will,
with the syntax used here, be “..bp/7 10 1”.



3. DATA 3

-I 1000000 The upper limit for the number of learning iterations to run. This is not the same
as epochs, which can be obtained by dividing the number of iterations with the size of the
training set.

-t 10000 itok 0.05 Tells how often the test network will be tested and how many samples that
have to be correct to see if it has reached the error limit. The “itok” has typically been
set to the numbers of vectors in the training set. The error limit has typically been set to
0.05 when one want to learn the train set as good as possible within the iteration limit.
For the continuous learning case the error limit has been set to a specific limit for each
item to save time.

-a 0.05 The learning rate, “alpha”, has typically been set lower or equal to the error limit.
Alpha has typically been started on 0.1 for a limited number of iterations, like 100000,
then decreased to 0.05.

3 DATA

3.1 Input and Output Data

The data that has been processed in this study is a set of vectors consisting of process input
parameters and automatically and manually measured process outputs. The manually measured
output values being predicted are csf, density, elongation, tear and tensile. Nine process inputs,
most of them automatically measured, have been used. For proprietary reasons these inputs are
called par1 – par9 here. The names and ranges of the input and output values used are shown
in table 1.

parameter range

csf 250 · · · 449
density 523 · · · 665
elongation 3.9 · · · 6.3
tear 11.6 · · · 16.5
tensile 60.8 · · · 84.7
par1 0 · · · 6
par2 0 · · · 100
par3 0 · · · 100
par4 0 · · · 100
par5 29.2 · · · 45.9
par6 6.3 · · · 14.1
par7 22.2 · · · 30.9
par8 255 · · · 367
par9 51 · · · 75

Table 1: The set of signals used listed with
their active ranges. For two of the input
values, par2 and par6, there were many
values missing. Of this reason these two
signals were skipped from the input data
set.

3.2 Data Selection and Filtering

As the network learning algorithm will do a regression analysis of training data to create an
input output mapping with as little error as possible, we need training data of as good quality as
possible. To increase the quality some filtering of the data has to be done. There may be several
reasons for filtering out data. Data may simply be missing, for instance due to some missed



4

manual input, or data may be erroneous. In this study there has not been any possibility for any
consistency check, i.e. , checking that each value in an input vector is reasonable considering all
the other values. The only thing we could do was to remove data that obviously was outside some
extreme limits. The limits for the acceptable range for each item was decided from histograms
showing the distribution of each parameter. These histograms are shown in appendix A.

The total amount of data samples that have been available in this investigation is around
200 vectors from one process and around 50 vectors from another process. The set of 50 vectors
was considered too small to make use of at the present time. Also the set of 200 vectors is a
small set for some of the more complex nets that have been tested, why one should be cautious
in drawing conclusions too far. After filtering the set of 200 vectors, by removing those vectors
that obviously contained input values that were outside reasonable limits, we ended up with
110 vectors of good quality that could be used for training and testing. This may seem to be
very few, but it was considered more important to have a good quality on those that were left
than to risk learning of erroneous vectors. In the first experiments we tried to filter the data set
selectively for each output parameter to not need to remove more samples than necessary but
later on we removed all sample vectors containing some bad value.

3.3 Preprocessing and Scaling

In the preprocessing of data that is done before presenting it to a network, the first step consists
of filtering out vectors where some of the signal values lie outside some accepted range. If too
many values of a signal lie outside the accepted range then the whole column for that signal is
removed and will not be used as input or output to the network. The data is then transformed
to a form that is suitable as inputs to a network. In this study all signals have been construed
as continuous valued data. The simpliest way to represent continuous valued variables as, for
instance, csf above, is to let the analogue output value of a unit be proportional to the actual
value. In that case only one neuron is needed to represent each value. The output value of a
neuronal unit is normally, of practical reasons, limited. It is therefore necessary to scale the
parameter values to fit within the limited output range. The scale has been chosen so that the
parameter range is mapped to fit within an almost linear piece (0.25 · · · 0.75) of the sigmoid
output function of the units (figure 1). There are not the same limitations of the input signals,
but for practical reasons all inputs have been scaled to lie within the same range as the outputs,
i.e., 0.25 · · · 0.75.

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1

Figure 1: A sigmoid function, in this case
(exp (−kx) + 1)

−1
, with three different k. This

kind of squashing function is the most commonly
used one to make the output of a neural unit non-
linear. The output of a unit will show an almost
linear response for a small input range, otherwise
the output is limited, often to the interval 0. . .1.



4. RESULTS 5

4 RESULTS

To be able to classify how well a network predicts a parameter one needs some measure of
quality. In the following we have used the average error (merr) and the standard deviation
(sigma) for the difference between actual and predicted signal. The standard deviation and the
average error are both expressed in percent of the dynamic range for the predicted signal. The
average error is good measurement to see if there is some some offset or systematic error in the
predicted values. The standard deviation is a well established error measurement, the formula
used for its calculation here is

σ =

√

√

√

√

√

√

n
∑

i=1

(xi −

∑

n

i=1
xi

n
)
2

n− 1

4.1 Partitioning of Input Data

Before training a network, the data set has to be splitted into a training part and a test part.
This has to be done to be able to measure the generalization capability of the network, i.e. , its
performance on data it has not been trained on.

For some experiments the data has been splitted in four different ways, first, last, random
and split. These are illustrated in figure 2. The partition “First 75%”, for instance, says that
75% of the total amount of data has been picked consecutively, starting from the oldest sample.
“Last 75%” is similar but goes backwards starting from the most recent sample. For “Random
75%” the samples have been picked according to a rectangular distribution from the whole
interval. The “Split 3-1” separates the data systematically, three to the train set, one to the test
set and so on. These four ways of partitioning data are called “first”, “last”, “rand” and “split”
in table 2 and “fi75”, “la75”, “rn75” and “sp31” when they occur in most other tables, like in
appendix B. A column head like csf.fi75, tells us that this is the output signal csf predicted
with the partition “First 75%”.

Too see what difference the type of data partition can make, look at table 2, which has been
extracted from the tables in appendix B. What is shown is the prediction quality averaged over
all architectures for four different partitions of the data set. As the “last” partition shows the
highest error rate it indicates that the first 25% of the data set would behave different than the
rest. This could be interpreted as that something has happened with the process during the
first sampling period. Further, if we assume that the output signals and the input parameters
would change slowly, but mainly caused by other factors than the input parameters, then the
best guess would probably be that the new value is just close to the old one. In such a case
it could be expected that the systematic “split 3-1” partitioning would perform best. For csf

and tensile we actually get the best performance with the “split” partition. The difference may,
however, not necessary be significant for a conclusion. For industrial process signals are, of
course, predictions about the closest future the most interresting to make. Of this reason, most
of the prediction experiments have been done by using the “First 75%” partition.

4.2 Finding a Good architechture

The network algorithm makes the input output mapping by adapting the weights of the network
to the training data. If certain criteria of the training set are fulfilled, like that each input vector
corresponds to a unique output vector or value, then the mapping function of the network can
be done with arbitrary precision if we choose a network which is just complex enough. If the
network get too complex, however, it will probably generalize badly. This problem can be



6

Figure 2: Four different partition types, which have been used. In all four cases have 75 % of
the input data been used as training data.

first last rand split

csf 14.1 37.8 14.3 11.2
density 12.9 15.3 9.9 14.4
elongation 8.0 12.0 10.9 9.6
tear 14.0 26.6 12.3 13.9
tensile 15.7 16.5 13.2 12.9

Table 2: Prediction performance for dif-
ferent partititons, averaged over all test-
ed architechtures. As “last” shows the
largest error for all outputs it indicates
some change in the process during the first
sampling period.

thought of as similar to finding a polynomial approximation to some function. If the polynomial
degree is too high it will probably approximate the actual function badly due to noise in the
regression input data.

If there is a big amount of training data available the network can be allowed to be rather
complex. In the case studied here we tired five different architectures from a simple one layer,
i.e., where the output is just a linear combination of its inputs, to a three layer architechture.
Three different two layer networks have been tested where the three layer network had about
the same complexity as the two layer network with 20 units in its hidden layer. See figure 3 for
a clarification of this. The number of inputs have varied but the first hidden layer has had 10,
20 and 30 units. The three layer net had 10 units in both hidden layers. The syntax used in
result tables is like: “7 20 1” or “7 10 10 1” where the first means 7 inputs, 20 in hidden and
1 output and the second is 7 inputs, 10 hidden, 10 hidden and 1 output.

In figure 4 below, we can see how two different networks performs on a training and a test
set of the parameter elongation (stretch in diagram). A one layer network, which corresponds
to a linear system of equations, and a two layer network with 30 units in the hidden layer.

Performance on different architechtures

When doing a prediction of some output parameter we normally don’t know in advance how
complex the problem is. It may be linear in the sense that each output can be written as a
linear combination of its inputs or it may be so complex that it needs several hidden layers with
a lot of units. To get a picture of how complex the problem is for each output parameter each
of them has been been run separately on several different architechtures (Appendix B). Table 3
shows the average of the standard deviations of the prediction error over different partitions
for the output parameters csf, density, elongation, tear, and tensile when these are learned on



4. RESULTS 7

Figure 3: Two networks with about the same complexity. With the syntax used in this document
to denote network architectures they would be described as M N O (4 8 1) and M N1 N2 O
(4 4 4 1) respectively. The number of weights in the left one is ((M + 1)N) + (N + 1)O = 49
and in the right one (M + 1)N1 + (N1 + 1)N2 + (N2 + 1)O = 45.

different architechtures. From this table it may be a preliminary proposal that csf and tear are
best predicted using a linear combination of its inputs when elongation seems to do best with a
two layer net and density and tensile seems to make best use of the properties of the three layer
network.

TRAIN set 7 1 7 10 1 7 20 1 7 30 1 7 10 10 1

csf 10.0 6.8 6.8 6.7 6.9
density 11.2 9.4 9.2 9.3 9.7
elongation 12.6 7.8 7.9 8.0 8.4
tear 12.9 10.4 10.2 9.8 9.6
tensile 12.1 9.5 9.5 9.6 9.9

TEST set

csf 11.7 13.4 21.9 20.9 18.2
density 13.8 13.9 13.6 13.1 11.3
elongation 11.4 9.8 9.6 9.5 10.4
tear 13.4 17.5 19.5 19.2 14.3
tensile 14.4 13.7 16.0 15.7 13.0

Table 3: A more complex architechture generally performs better on the training set but may
cause a bad performance on the test set. Here it seems like csf and tear just need one layer
but elongation needs two and density and tensile needs three layers.

4.3 Requirements on Cpu-time

The backpropagation learning algorithm is a numerical method that is similar to gradient descent,
i.e. , a way to find an optimal solution (a minimum), versus some set of adjustable parameters,
to some function under some boundary conditions. In the neural network case the adjustable



8

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 10 20 30 40 50 60 70 80 90

SIGMA=13.3%

’stretch.sp31.7_1.train.targ’
’stretch.sp31.7_1.train.out’

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 5 10 15 20 25 30

SIGMA=11.9%

’stretch.sp31.7_1.test.targ’
’stretch.sp31.7_1.test.out’

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 10 20 30 40 50 60 70 80 90

SIGMA=7.6%

’stretch.sp31.7_30_1.train.targ’
’stretch.sp31.7_30_1.train.out’

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 5 10 15 20 25 30

SIGMA=8.4%

’stretch.sp31.7_30_1.test.targ’
’stretch.sp31.7_30_1.test.out’

Figure 4: On the left is shown how two networks have adapted to a 75% training set for
elongation (stretch in diag). The upper diagrams show a one layer, i.e. , a linear combination,
network and the lower diagrams show a two layer network. The standard deviations for the
errors are shown in the diagrams. On the right we see the prediction performance for the same
nets on a 25% training set.

parameters are the weights and the function to minimize is the output error. The time to train
a network is not a simple function of the number of weights, neither is it a simple function of
the number of training samples. If there was just one optimal solution then the time to find
the optimum could grow faster than polynomial in the number of weights. There may often,
however, in a large network be multiple solutions that are equally good. Generally speaking, it
takes a longer time to train a more complicated network. In the experiments performed in this
study we have run the training until a specified error limit was reached, or until a maximum
number of iterations has been performed. In the tables in, for instance, appendix B the table
include the value “Kepo” that is the number of thousands of training epochs. One epoch is when
all training samples have been used once. In figure 5 it is shown how “Kepo/hour” decreases
when the number of weights increases. When the experiments have been run the iteration limit
has been set so that the most complex net should come no further, which means that the less
complex nets have run many more iterations than necessary. The nets that have been used here
need no more than an hour to to retrain completely on a reasonable fast personal computer or
a workstation. It should be noticed that a larger training set would not make the training time
significantly longer. If the set of training samples is too small compared with the network size,
then the training time would be rather small also for a complex net but with a bad generalization
capability.



4. RESULTS 9

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

K
 
E
P
O
C
H
S
 
/
 
H

WEIGHTS

K EPOCHS / H vs WEIGHTS

Figure 5: Number of K epochs, i.e., number of t-
housands epochs per hour, plotted versus the num-
ber of weights for five of the networks that have
been used in this study. The timing which has
been plotted here is for the networks 7 1, 7 10 1,
7 20 1, 7 10 10 1 and 7 30 1 with stretch as the
output. It was measured on a DecStation 5100.

4.4 Selection of Significant Inputs

When we learn a function by examples it may be so that an output is much dependent on some
of the inputs, but it can also be so that the actual function that we try to predict is not at all
dependent on a specific input parameter. In the latter case when we adapt the network to the
training data the algorithm will of course try to adapt the network also to those variables that
the output is actually not a function of. When this network then is used on test data, these non
significant inputs may act just as random disturbances.

If plotting just one variable versus another we can visually get a feeling that one input is
clearly dependent on some other input as in figure 6 or that they are mostly independent as
seems to be the case in figure 7. This is however, not easy to do visually when dealing with
multi dimensional data.

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

50 55 60 65 70 75

T
E
A
R

PAR9

11.5

12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

260 270 280 290 300 310 320 330 340 350 360

T
E
A
R

PAR8

Figure 6: These two variables show a clear cor-
relation.

Figure 7: These two variables seem to be un-
correlated.

Input sensitivity test

The method used here to find the input parameters that have the greatest impact on an output
value is to first train a network with all input parameters available and then test how much the
prediction capability of the network is affected when each of the input parameters is “removed”.
The removal of the input has been done here by replacing the input with its average value. The
tables in appendix C show how each of the parameters have been predicted from all the others.



10

The tables are arranged from greatest impact to smallest. The table 4 below can also be found
in appendix C. These two tables show how the prediction performance on the test sets for tear
and tensile is affected when each of the other parameters are replaced with its average. A “—”
signifies that none of the inputs were missing. An interpretation is that tear is mostly affected
by the input par3, and tensile by the parameter par4. Another interpretation may be that par1,
csf, par7 and density may not be significant for tear. In the same way density, tear and par3

appear to have a low impact on tensile. It may be noted that the error difference when an input
is “removed” and when it is available in most cases here is to small to give an answer with high
significance for the small input data sets that have bee used.

tear %sigma %merr

par3 22.3 6.1
par9 20.0 0.7
elongation 19.2 -1.0
par4 17.7 -0.9
par8 17.4 -1.1
par5 17.3 1.3
tensile 17.2 4.3
— 17.1 -0.3
par1 16.5 -1.9
csf 16.5 -0.3
par7 16.2 6.2
density 16.2 0.1

tensile %sigma %merr

par4 20.7 -19.2
csf 16.1 -7.6
elongation 15.7 -7.8
par9 15.4 -7.5
par5 15.4 -7.1
par1 15.3 -6.9
par7 15.3 -5.1
par8 15.2 -7.5
— 15.2 -7.5
density 15.1 -7.1
tear 14.2 -12.7
par3 13.8 1.3

Table 4: From appendix B. Prediction performance on the test set. The properties par1, csf,
par7 and density seem, from this test set, somewhat less important for tear than pulp type and
fiber length. Also for tensile it seems as pulp type has a high significance. The error differences
here are probably to small to tell that some of these input signals are irrelevant for tear and
tensile.

Removal of non significant inputs

The tables in appendix D show how the performance is affected when the inputs that in ap-
pendix C caused an improvement on the results of the test set when they were removed from
the train and test sets. In some cases they have been run on more than one architechture, both
the architechture as in appendix C and some other architechture where they previously showed
a good result.

Removal of Lab Data inputs

In the results shown in appendix E the strategy for removal of inputs have been a little different.
The inputs here do not include those that are time consuming to measure, i.e. , csf, density,
elongation, tear and tensile. Further, if some input showed to be insignificant on the training it
was removed. The tests have been performed as in appendix C.

These tests indicate that the pulp type, indicated by par2, par3 and par4 is significant
for both tear and tensile. We can see that the par1 seem to bee of some significance for csf,

elongation, par9 and tensile.



4. RESULTS 11

4.5 Different Learning Strategies

Instant prediction

The prediction being performed in the previous examples is based on the instant input values
only. The assumption is that the predicted process has no memory, i.e. , an output is a function
of the momentarily input values only and does not depend on the history of an input or output.

As a simple example of a process that can not be predicted this way. Imagine that the process
we model is the output voltage from a capacitor being charged with a current proportional to
the input voltage. In such a case nothing can be said about the output values by just looking
at the instantaneous input values.

Continuous learning

If the process which is modelled would change its characteristics over the time, then it could
be expected that we could improve the prediction result by making the network a one step
predictor. The idea is that we let the network learn the behaviour of the process during a
limited time span. The process outputs are then predicted from the next input vector being
measured. When the actual output vector, which was predicted, becomes available, this can be
used as new training data for the network. The oldest sample is then thrown and replaced with
the newest one. The figure 8 below shows how tear is predicted with a one layer and a two layer
network using par1, par8, par5, par9, , par4 and par3 as inputs. The performance according
to the standard deviation is about equally good with 12.0% for the 7 1 net and 12.3% for the
7 10 1 net. The latter net does, however, show a better error distribution with no offset why
that one would be to prefer. In figure 9 it is shown how many learning iterations that has to be
done for each new sample to reach the same error performance that was obtained on the first
traning set. With “iterations” is here meant the number of separate training patterns that has
to presented for the network. A low number shows that the network could be quickly retrained
within the goal to keep the error level low. A high value here indicates that the network could
not learn the new sample within a limited number of iterations.

In appendix F the one step predictor performance for the continuous learning case is listed
for csf, density, elongation, tear and tensile. The columns “%sigma” and “%merr” there, as
before, stand for percent standard deviation and percentage mean error. There is also a column
“maxerr” that shows the largest error as predicted− target in actual units. Diagrams for error
distribution use the range of the neuron outputs. There are also diagrams for the number of
iterations needed to relearn the network after each sample. In most cases when the whished error
limit could not be reached quickly, the number of iterations have reached their limit. This is
also a nice result in that sense that a much lower threshold on the number of the limit iterations
can be set without affecting the performance.

Continuous learning, Tear and Tensile

In appendices G and H we have studied the tear and tensile in particular. In this case more
samples have been used than in the previous examples. The original data set size is the same
but here only those sample vectors containing bad values that would affect tear and tensile have
been removed in the preprocessing. We then ended up with 179 useful sample vectors. The
training approach was here a little different from the previous section. The network has been
trained until no significant improvement could be obtained on the test set. Then, for each step
forward, the network has been retrained but it has not been allowed to retrain fully. The number
of iterations has been limited to about 200000. The idea behind this is to produce a kind of



12

10

11

12

13

14

15

16

17

18

0 5 10 15 20 25

’tear.fi75.7_1-.test.targ’
’tear.fi75.7_1-.test.out’

10

11

12

13

14

15

16

17

18

0 5 10 15 20 25

’tear.fi75.7_10_1-.test.targ’
’tear.fi75.7_10_1-.test.out’

0

1

2

3

4

5

6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

’tear.fi75.7_1-.test.edist’

0

1

2

3

4

5

6

7

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

’tear.fi75.7_10_1-.test.edist’

Figure 8: The property tear predicted with a one-layer (left) and a two-layer (right) net. They
perform equally well but the two-layer net has a better error distribution with no offset, thus,
the two-layer one would be preferred here.

inertia, i.e., a small variation in the input would not cause a drastic change of the network
parameters.

The same length as in previous section , i.e., 82 samples has been used as the training set
for prediction of the next sample. This means 46 % of the total set. We can see from the table
in appendix G that the best result here is obtained from the linear, one layer network in the
case with continuous learning. The 7 10 10 1 could probably have given a better result if it had
been allowed to retrain fully as is indicated by the retrain iteration counts diagram.

When we look at the result for tensile in appendix H we see that we also here get the best
result from the one layer network with continuous learning.

There is a great prediction failure between sample number 15 to 30 for all the multilayer
networks where the one layer network performs rather well. This is probably an indication of

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 5 10 15 20 25

’tear.fi75.7_10_1-.test.iter’

Figure 9: In the continuous learning case
the number of learning iterations may vary
widely for each new sample. A high iter-
ation count here tells us that the whished
error level not could be reached for a cer-
tain sample.



4. RESULTS 13

too few training samples. The tensile target is rather rugged as can be seen from the diagrams.
The multilayer nets have tried to adapt to this shape. If the jaggy shape actually is there due
to some distorsion or measurement errror then it could be expected that the more complex nets
would try to adapt to this too quickly with too few training samples available.

Fixed learning, Tear and Tensile

To get a chance to compare the performance of the continuous learning case with the one where
we have trained the net only on the beginning of the history for the same data as in the previous
section, here 82 samples, these are shown in appendices I and J. The one layer network here
seems to have no possibility to follow the tricky part between sample 15 to 30 that appear both
in tear and tensile. There seems to be information about this, anyway, in the training part as
all the multilayer nets react on this interval. Here one can see that the number of units in the
hidden layer have a great influence on the capability to cope with the sample interval 15 to
30. One interresting result is of course that the three layer net 7 10 10 1 detects the interval
perfectly but goes in the wrong direction both for tear and tensile in this interval.

Temporal prediction

The Aspirin tool which has been used here supports three forms of temporal coding. One is to
have recurrent connections from delayed replicas of outputs that can be weighted in on any layer.
The delay can be from one to four steps. Another form is to delay the inputs one or several
steps and present these delayed inputs through weights for some layer. A third method is to
do averaging over several input and present the average value through weights for the network.
These methods can of course be combined. If one of these methods was going to be used here
it is of course hard to say which method would be best. This would depend on the problem.
The results here does not include any of these temporal codings. There are some problems with
temporal coding that have not been solved. One problem is that the samples are not equidistant
in time, thereby making it necessary to do some kind of extra preprocessing so that the samples
become equidistant. One such way is to do linear or spline interpolation between the samples.

Limited history

In an implementation of this method the learning strategy will probably be some form of con-
tinuous learning. In such a case it may be important to address the problem of which size of the
history that is preferrable to learn. The reason for this is that the process may change due to
external environmental changes that are not measured. In such a case will the old history more
act like disturbances.

4.6 Best Results

In table 5 below are the best results that were obtained in this study extracted. The table
shows the signal name, the partition strategy, the learning strategy, the parameters standard
deviation and its average error. The table does only include the outputs csf, density, elongation,
tear and tensile. It may be noted that the table with best possible results, any partition, where
the input information is restricted to quickly available parameters, shows better results than
the table where the partition is restricted to the first one, without any restrictions on the input
parameters. If this difference should be treated as being significant it is interresting, because,
if the result depends on the partition then it would indicate that the prediction may be done
better by, for instance, decreasing the size of the history etc.



14

The most interresting table may be the one that shows the continuous learning case. This is
the case that would most correspond to the reality when doing prediction in real time, but the
results may be possible to improve by, for instance, more samples over a shorter period, temporal
and interval coding. See the section “FUTURE EXTENSIONS” for a discussion about this. The
diagrams with test results for the continuous learning case are supplied in appendix F. There is
also some statistics about the actual input values used in appendix K.



5. DISCUSSION OF RESULTS 15

Best possible, process data only, any partition

output arch part sigma merr inputs

csf 7 1 sp31 6.8 -1.8 p1,p8,p5,p9,p7,p4,p3
density 7 10 10 1 la75 9.2 6.8 p1,p8,p5,p9,p7,p4,p3
elongation 7 20 1 fi75 7.1 8.2 p1,p8,p5,p9,p7,p4,p3
tear 7 1 rn75 11.7 -7.6 p1,p8,p5,p9,p7,p4,p3
tensile 7 10 10 1 la75 10.8 5.2 p1,p8,p5,p9,p7,p4,p3

Best with process data and lab data, first partition

output arch part sigma merr inputs

csf 8 10 1 fi75 9.0 7.9 p3,ten,p8,p7,den,p9,elo,p1
density 7 10 10 1 fi75 11.9 5.8 p3,tea,csf,p4,p7,p5,pl
elongation 7 20 1 fi75 7.1 8.2 p1,p8,p5,p9,p7,p4,p3
tear 7 1 fi75 11.9 7.5 p1,p8,p5,p9,p7,p4,p3
tensile 8 10 10 1 fi75 14.4 -4.4 p4,csf,elo,p9,p5,p1,p7,p8

Best with process data, first partition

output arch part sigma merr inputs

csf 7 30 1 fi75 13.5 0.1 p1,p8,p5,p9,p7,p4,p3
density 7 10 10 1 fi75 11.9 10.3 p1,p8,p5,p9,p7,p4,p3
elongation 7 20 1 fi75 7.1 8.2 p1,p8,p5,p9,p7,p4,p3
tear 7 1 fi75 11.9 7.5 p1,p8,p5,p9,p7,p4,p3
tensile 7 30 1 fi75 15.3 -6.9 p1,p8,p5,p9,p7,p4,p3

Best with process data, continuous learning

output arch part sigma merr inputs

csf 7 30 1 co75 11.9 -0.8 p1,p8,p5,p9,p7,p4,p3
density 7 20 1 co75 13.9 2.6 p1,p8,p5,p9,p7,p4,p3
elongation 7 20 1 co75 8.0 2.3 p1,p8,p5,p9,p7,p4,p3
tear 7 1 co75 12.0 2.8 p1,p8,p5,p9,p7,p4,p3
tensile 7 10 10 1 co75 14.3 -3.3 p1,p8,p5,p9,p7,p4,p3

Table 5: The best results that were obtained in this study. Abbreviations: den=density, elo=elongation,
tea=tear, ten=tensile. par1 – par9 are written as p1 – p9.

5 DISCUSSION OF RESULTS

The results of this study have showed that it is possible to do a prediction of certain laboratory
measurements with a fairly good precision. Some important questions that arise are:

• Are the results good in comparision with other methods?

• Is the precision obtained high enough?

• Can the precision be improved?

Considering the first and second questions it is not possible to give a concise answer as we have
not had results available from similar experiments with other methods on the same type and
amount of data. Further, the data set underlying our investigation have most likely been too
small to allow an answer with high significance.



16

5.1 Prediction Quality

We have reached a prediction quality that lies around 5-10% standard deviation, calculated
relative to the dynamic range of the parameters. Under some circumstances this may be sufficient
and under others it may not. For many of the parameters one should take into consideration
that the actual ranges that have been used are often small compared to the absolute value of
the parameters.

It must be clear, however, that no method can make a better result than what is possible
due to disturbances and measurement errors in the training and test data. If the errors for
these were measured as parts of the absolute values they would be much smaller than presented
here. We did also observe that the prediction quality was rather much dependent on the type of
partitioning into training and test set that was done as was shown in table 2. This indicates that
something has happend in the process from the first to the last sample. The prediction quality
can probably be increased by using more samples and by using more measurement values. More
samples is always better as this allows us to use a more complex network and more measurement
values, like for instance temperatures etc., may allow us to find other significant inputs.

The coding technique used is also important. By using, for instance interval coding, as is
described in the section “FUTURE EXTENSIONS” below, it may be possible to gain some
more robustness and reasonable solutions also when the data set is inconsistent and unreliable.

5.2 Data Availability

The data that has been available for training of the networks has been quite small compared to
what common rules of thumb say. For some of the more complex nets, we should, considering
these rules, have used at least ten times the amount of data that was actually available. This
would be perfectly possible considering training times etc. This shortage of data has to be
taken into account when the results are evaluated. Those cases where we got a poorer result
with a larger hidden layer than with a smaller one, indicate that the data set was in fact too
small. Some less intuitive results, such as the indication that density would not be significant
for predicting tear and tensile may also be attributed to the relative lack of data.

6 FUTURE EXTENSIONS

Under the assumption that the neural network method developed and studied here is considered
good enough, it may be used almost “as is”, to do prediction of industrial process parameters.
The method could, however, be extended to cover a wider range of usage than the cases studied
here would indicate.

6.1 Measurement Estimation

One of the first things we did in this study was to throw away those samples containg data that
could be easily detected as not being within reasonable limits. The reason for doing so is of
course that if we fed this data into the learning network it would learn an illegal input output
mapping. There may be several reasons for data to be outside allowed limits. The data may
either be totally missed due to forgotten manual input or outside limits due to a bad probe.
The reason may also be that laboratory data is missing due to some problems. It may also be
that some tests are so complicated or expensive that they are preferably not done too often.

In all the cases above in which some data is missing it may not be necessary to throw the
whole sample anyway. Under the assumption that one datum can be reasonably estimated from
a subset of the rest of the data samples, then the missing datum can instead be replaced with its



6. FUTURE EXTENSIONS 17

estimation. Each parameter can have an optimal associated network that runs on a timescale
suited for the cost and prediction quality for that specific parameter, thus making all parameters
instantly available without explicit measurements.

6.2 Consistency Check

When a datum has found to be within its allowed extreme limits this does however, not guarantee
that it is valid. A manually fed value may look right but may still be 20 % from the correct value.
A probe may be degraded or need calibration. Assume then, that a set of networks are used for
prediction of each parameter from a subset of the other parameters. For each new sample that
arrives, the network performs a prediction of each of the parameters. This prediction can then
be compared with the value just fed in. Data can thus be checked sample by sample, datum for
datum that it does not significantly deviate from its predicted value or that it does not cause
an extreme value in some other parameter. This will of course be a great help for an operator
doing manual input but it will also provide a possible way to give alarms about the necessity
for recalibration or replacement of degraded probes.

6.3 Optimization of Learning Time

The method could probably, with some effort, be extended with optimization of the learning
time. The learning iterations would then be stopped when the performance on the training set
could not be improved and before the performance on the test set would possibly get worse due
to overlearning. This optimization may be a hard problem to solve in a general way but by
using statistics about required iterations versus number of connections this could probably be
done in a “good enough” way. A great advantage with this would be that the required precision
would not need to be set in advance. The network would do the best possible anyway.

6.4 Installation of online system

The method studied in this work for parameter estimation can be installed online on a worksta-
tion or on a reasonably fast personal computer, preferrably a UNIX work statiton.

6.5 Interval Coding Technique

An important coding technique that has not yet been tested is to use several units to code for
one value. Such interval coding technique can be utilized for both logical (on/off) as well as for
analogue values.

There are several reasons that speak for interval coding. We may first look at the input
values. First it may be so that the precision needed is not rectangular distributed over the
whole input range. An input value range may be distributed into several groups where all the
values lie in clusters with almost no values in between. With an interval coding technique the
available precision can be focused on these groups. One may also want to indicate the quality
of a sample. With interval coding it is possible to lower the significance for certain samples.

The same reasons why interval coding is good on the inputs is also valid on the outputs.
There is however, one more important reason to have interval coding on the outputs. As was
mentioned previously, a multi-layer network with an architecture complicated enough, can in
principle learn an input output mapping with arbitrary precision if each input vector corresponds
to a unique output vector. If, however, one input vector value can result in several different
output values in the training set, then this set can not be learned completely. By instead using
interval coding on the outputs the possibility to learn the training set can be increased. It is



18

also possible that the training vectors are nice but during prediction one may get conditions
when the input vector would indicate two or several contradictory values on the outputs. This
situation can also be resolved with the help of interval coding.

In cases with multiple valued outputs this can be interpreted as multiple hypothesis about
the values.

6.6 Temporal Coding

As was mentioned in section 4.5, there are some temporal representation problems that have to
be solved before a temporal coding of the inputs can be done. One method is to sample the
process periodically, thus making the samples equidistant in time. Another method, that was
previously mentioned, could be to do some kind of interpolation between the samples. If the
process contains some kind of “memory”, then such coding technique may improve the results
further.

7 SUMMARY

This study has focused on the problem of predicting various measures of paper quality from
relevant input parameters. Typically, we have reached a prediction quality of 5-10% relative
standard deviation. The results obtained do not give a complete answer to whether or not the
artificial neural network technique can do better or at least equally good as other methods. It
has, however, indicated that a quite good result can be obtained even though the amount of
data available for training and evaluation of the networks was limited. Some ways of extending
the use of this method to on-line verification and filling in of data has been proposed. A neural
network based technique has an advantage in that it is self-organizing and capable of adapting
to a process that may change with time.

8 Acknowledgments

STORA Teknik AB is acknowledged as being the sponsor of this project and supplier of data.
We also want to thank the MITRE corporation for making their Aspirin/MIGRAINE software
package available and Aubrey Jaffer at MIT AI-lab for making his scheme package scm available.


