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Abstract

In previous work approximate solutions have been used for expectation
and variance of the information component (IC). This report presents
an analytical approach to calculate exact expressions for the expectation
and variance of the information component (IC). The IC is used in a
Bayesian neural network [3] as a weight between neurons representing
discrete events. The IC relates the information possessed about one
state of one variable with one state of another variable, and is used
for calculation of a posterior probability distribution conditioned on a
set of given input events. It is used as a measure of disproportionality
in data mining [1]. The mutual information between two variables, as
defined in information theory [4], can in its discrete form be regarded as
a weighted sum of ICs. The expectation of the IC provides a measure
of the strength of an association between two states and its variance a
measure of the uncertainty, which is essential for low counter values.



1 Introduction
We are concerned with computing the expectation and variance of
Pi;

ICZ‘j = log .
Pi - Pj

We consider p;;, p; and p; as random variables. We know or assume that the marginal
distributions of these variables are Beta-distributions with respective parameters.

2 Expectation of logp

To compute the expectation of IC; we observe that
E[IC;j] = Elogp;; — Elogp; — Elogpj,

which means that the marginal distributions are sufficient to compute the required ex-
pectations. We do this in a generic manner, i.e. we consider Flogp when p € B(a,b),
where B(a,b) is the Beta -distribution with parameters a and b. This means that p has
the probability density ([6, p. 173])

fo(p) = %pa‘l (1=p)", (2.1)

where I'(2) is Euler’s gamma function. The Beta -function is

(a) - T(b)

B(a,b) = 2.2
(a” ) F (a + b) ( )
so that
1 -1 b—1

= (1= : 2.3
fo () =3 @D’ (1-p) (2.3)

By a standard result about expectation of functions of random variables we have

1 1

Elogp = | Togppt e (1= p)" Hdp. 2.4
/P = Frapy Jy 18P P (1—p)" dp (2.4)

Next we prove the following

I I
Proposition 2.1 Elogp = F((Z)) T ((Zj—_:))

Proof: Tn view of (2.4) we compute first the integral f, logp-p® ' - (1 — p)* 'dp. This is

done as follows. We recall that if d% denotes differentiation with respect to a then
e @,

da”  da

using the natural logarithms. Thus, since

alog? — Jog 3 - 3%, (2.6)

1
(1= p) " dp = Bla,b),
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we have from (2. 6) that

Cogp-p (1= p) M= [ Sty (1= p) = - B(a). (27
da da

assumlng it is justified to exchange the order of the differentiation and the integral. Next
we observe that if f'(z) is the first derivative of f(z), then

d f'(z)
- = 2.
- log f(z) @) (2.8)
and
Blogp = — /1 logp-p*~* - (1—p)" dp
B(a,b) Jo
1 0
= .—B 2.
Bab) da (a,b) (2.9)
= 9 log B(a, b). (2.10)
Oa
By (2.2) we have
0 0 ['(a) - T'(b)
—log B = —log —"——+~. 2.11
5q 108 B(a,0) = 5 -log Tath) (2.11)
By straightforward differentiation this becomes
0 ['(a) T (a+b)
—log B = — . 2.12
In other words we have obtained (2.5) above as claimed. o

2.1 A series formula

By a well known formula recapitulated and proved in [5, p. 467] it holds for z which is
not a negative integer that

I'(2) 1 &1 1
_ .1 L 2.13
I'(z) 7 z+ngl<n z—i—n) (2.13)
where v &~ 0.577215.. is Euler’s constant. We can also write this as that
I'(2) 1 0 1
__, 1. ) 2.14
o= () .

If we now apply (2.14) in the left hand side of (2.5) we get by some elementary simplifi-
cations that

I'(a) T'(a+b) b 0 1

T T(a+b) a-(a+b) 2:: (a+n)-(a+b+n)

Hence we have proved

(2.15)

Proposition 2.2 If p is B(a,b) - distributed and if a and b are not negative integers,
then
b s 1
El =——b- . 2.16
°ep = a-(a+0b) (@+n)-(a+b+n) (2.16)

n=1
O



3 Variance of logp

Proposition 3.1 If p is B(a,b) - distributed and if a and b are not negative integers,
then Var [log p] can be expressed as a convergent sum.

Proof: Let us consider the second moment of logp. We have
1 1
Elog? :7/1 2p.p*t (1 - p)d 3.1
8P =gy o 8PP (1—p)” dp, (3.1)

where log? p = (logp)”. But since from (2.6)

d? d
-1 2% —log? 1 - 1% 2
da2$ 0g T - dax og -z (3.2)
we get by the above (3.2) that
1 0
Elog’p = - =5 B(a,b 3.3
8 P=FLp bl (3-3)

On the other hand using 2B(a,b) = B(a,b) - 2 log B(a,b) we get

9 g = LB 2 1og Ba,b) + Bla,b) 2 log B(a, )
B2\ Ba 7 gg BT 40 g2 08 P\D
so that
1 0? 1 0 0 0?
Blab) 02 B(a,b) = Bl %B(a, b) - —log B(a,b) + — 52 log B(a, b). (3.4)

oa
This yields

L 9 pn= (L 0gBan) + 2 togBab) (3.5)
B(a,b) 0a? @ da 87\ a2 87\ '
From (2.12) we get
9? 0T (a) 0T (a+b)

log B(a,b) =

(3.6)

da? 0aT(a) 0aT(a+b)

This is a useful formula due to the fact that derivatives of the natural logarithm of the

Gamma function (polygamma functions) have a known series representation. In fact it
holds that if L'(2) = I'(2)/T'(z), then for k > 2

dk 00

T l(2) = (“DFk-D'Y (z4+n)7F, (3.7)

n=0
see [5, p. 467]. Thus we have

8F (a) 0
— a+n) (3.8)
da T'(a) HZO




Ol (a+b) & —2
3aT(a+h) nzzo(a—i-b—f-n) :
Thus
(‘3822 log B(a, b) = io ((a+n)_2 - (a+b+n)_2),

which equals
0? s b? + 2ab + 2bn
log B(a, b) ,
da2 8 ;((a—i—n) (@+b+n)’

Hence from (3.3), (3.4) and (2.9) we get

2 —
Elog'p = B(a,b) aaQB( b)

9 L
= (alogB(a,b)) —i-ﬁlogB(a,b)

0 b2 + 2ab + 2bn
= (Elogp)? + .
(Elogp) nz:()((a-f-n)-(a—i-b—i-n))Q

Next, we recall that

Var [logp] = (E log® p) — (Elogp)’.

Thus we have proved

° b% + 2ab + 2bn
Var logpl = .
ar [log p] ,;Z:O((a+n)-(a+b+n))2

4 Information Component

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

In view of the preceding (2.16 and 3.13) we can compute expectation and variance of

IC;; = log p” if p;j, pi and p; have their respective Beta distributions.

However,

when calculatlng the variance we can not expect p;;, p; and p; to be independent which
is why we need the joint distributions to compute the covariances cov (log p;j,logp;),
cov (log pi;, log p;) and cov (log p;, logp;). Expectation and variance of IC;; can then be

expressed as
E[IC;j] = FElogp;; — Elogp;, — Elogp;,

Var[IC;;] = Varlogpi; + Varlogp; + Varlogp; +

(4.14)

(4.15)

—2cov (log pij, log p;) — 2cov (log pyj,log p;) + 2cov (log pi, log p;) -
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