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Abstract

The data mining task we are interrested in is to find associations between variables
in a large database. The method we have earlier proposed to find outstanding as-
sociations is to compare estimated frequencies of combinations of variables with
the frequencies that would be predicted assuming there were no dependencies.
The method we now propose use the same strategy as an efficient way of finding
complex dependencies, i.e. certain combinations of explanatory variables, main-
ly medical drugs, which may be highly associated with certain outcome events
or combinations of adverse drug reactions (ADRs). Such combinations of ADRs
may also be recognized as syndromes.

The method we use for data mining is an artificial neural network architecture
denoted Bayesian Confidence Propagation Neural Network (BCPNN). To decide
whether the joint probabilities of events are different from what would follow
from the independence assumption, the “information component” log(Pi j/(PiPj)),
which is a weight in the BCPNN, and its variance plays a crucial role. We also
suggest how this method might be used in combination with stochastic EM to
analyse conditioned dependencies also between real valued variables, e.g. to con-
sider the amount of each drug taken.

1 Introduction

We are studying an international data base of case reports, each one describing a pos-

sible case of adverse drug reactions (ADRs), which is maintained by the Uppsala

Monitoring Centre (UMC), for the WHO international program on drug safety mon-

itoring. Each case report, which can be seen as a row in a data matrix, consists of a

number of variables, like drugs used, which amounts of each drug and how the drugs

were taken, observed ADRs and other patient data like sex, age and resulting outcome

events for the patient [1]. The fundamental problem is to find significant dependencies

which might be signals of potentially important ADRs, to be investigated by clinical

experts. The estimates of significance are obtained with a Bayesian approach via the

variance of posterior probability distributions. The posterior is obtained by fusing a

prior Dirichlet distribution with a batch of data, which is also the prior used when the

next batch of data arrives.



2 Method

The Bayesian Confidence Propagation Neural Network (BCPNN) [2],[3], can be seen

as one way of rewriting Bayes theorem into a form which is reminiscent of other feed

forward artificial neural network architectures. It works by propagating probabilistic

belief values for a set of inputs or explanatory variables into a set of outputs which are

the beliefs that the given input represents one of a set of mutually exclusive classes,

which are the response variables. In the work presented here the inputs constitute the

drugs suspected of causing the adverse reactions and the outputs are the observed set

of adverse reactions or the outcome event suspected to be caused by the reported drug

or drug combination.

In the following, let a j denote the j:th compononent of composite output A of a

set of mutually exclusive outcome events. That is, output A could represent a certain

adverse reaction [true, false] or it could be a set of events like [alive, coma, death]

where a j would represent one of these outcomes. In a similar way input D may rep-

resent the presence of a suspected drug on a report. More generally, let D, denote a

multiple variable input event, where di is the input variable i of a set of conditionally

independent (P(D|A) = P(d1|A)·P(di|A)· · ·P(dn|A)) variables, and dik is the k:th mu-

tually exclusive component of one of these input variables. Then πdik
is the current

“belief” on input event k of variable i. If we only have discrete input belief values

(πdik
∈ {0,1}) and none of the input states overlap, then the feed forward neural net-

work like expression to produce posterior beliefs for a j given the input belief values

of πdik
can be written

P(a j|D)∝exp

[

logP(a j)+∑
i

∑
k

log

[

P(dik,a j)

P(dik)P(a j)

]

πdik

]

. (1)

The weight expression

ICi jk = log
P(dik,a j)

P(dik)P(a j)
= log

P(dik|a j)

P(dik)
(2)

in (1) we denote the “information component” between state j and state k of variable

di. Often we leave the k index out and just write ICi j because the explanatory variables

are usually binary and we are most often only interrested in the positive occurances, i.e.

the true states of the variables. The motivation for the notation “information compo-

nent” is that mutual information [4] in its discrete form can be regarded as a weighted

sum of information components:

I(Y ;X) = ∑
j
∑
k

P(xk,y j) log
P(xk,y j)

P(xk)P(y j)
, (3)

which defines the amount of information passed on from one variable to another. The

ICi jk in particular is a measure of the information migrating from state k of variable i

to state j of the other variable. Due to the properties of the logarithmic function the



expectation and variance for the ICi j kan be expressed as

E(ICi j) = E(log
pi j

pi p j

) = E(log pi j)−E(log pi)−E(log p j), (4)

V (ICi j) = V (log pi j)+V (log pi j)+V (log pi j)

−2cov(log pi j, log pi)−2cov(log pi j, log p j)+2cov(log pi, log p j).

A reasonable model distribution for P(dik,a j) is Dirichlet [3]. However, here will

the pi j, pi and p j all become a special case of the Dirichlet, the Beta. When p being

Beta(a,b) distributed there is an exact form [5] of the expectation and variance

E(log p) =
b

a(a+b)
−b ·

∞

∑
n=1

1

(a+n) · (a+b+n)
, (5)

V (log p) =
∞

∑
n=0

b2 +2ab+2bn

(a+n) · (a+b+n)2
. (6)

From the expectation and variance values (4) a probability interval for the ICi j can be

calculated, which is used as one signalling criterion when searching for unexpected

associations between drugs and adverse reactions.

2.1 Combinations of Variables

As described above, the ICi j is a useful measure to find new unexpected single drug

ADR associations. The focus of interest for this paper is, however, extending this to

analyse also combinations of variables. We want to find variables which interact con-

ditionally, i.e. given a certain outcome a set of drugs may show an unexpected inter-

action, alternatively when a certain drug or combination of drugs is given as input we

may find that a set of adverse reactions interact. The latter form of interaction between

adverse reactions may lead to detection of syndromes. Earlier [3] we have indicated a

way of finding such syndrome interactions by looking at conditioned probabilites for

combinations of adverse reactions. By looking at, e.g. the quotient

log
P(A1,A2,A3|D1)

P(A1,A2,A3)
= IC(A1,A2,A3;D1), (7)

where A j stand for an adverse drug reaction and Di for a medical drug, we may find

conditionally interacting triplets of adverse reactions. We demonstrated this earlier

[3] by looking for a specific syndrome and sorting the results on the IC(A1,A2,A3;D1)
according to (7) and found that we got very high rankings on the combinations of

adverse reactions known to appear within the syndrome picture. There are, howev-

er, certain limitations, this method will highlight strong dependencies between three

states, but they may be due to strong lower order dependencies. The purpose of our

search for interacting combinations is to find those where the interaction may not be

explained by lower order interactions. Assume that we are looking for pairs where

P(A1,A2|D)>> P(A1,A2), further assume that P(A1|D) and P(A2|D) are independent

as well as P(A1) and P(A2) being independent.

P(A1,A2|D)

P(A1,A2)
=

P(A1,A2,D)

P(A1,A2)P(D)
=

P(A1,A2|D)P(D)

P(A1,A2)P(D)
=

P(A1|D)P(A2|D)

P(A1)P(A2)
(8)



Under this assumption would the joint probability increase when a marginal prob-

ability (κ) increases. We were then looking for a measure which would make the

combinations stand out despite lower order interactions. An idea for extension of the

IC-measure was to use the IC between a set of ADRs conditioned on a drug

IC(A1;A2|D) = log
P(A1,A2|D)

P(A1|D)P(A2|D)
, (9)

which when compared with an unconditioned IC measuring the general interaction

between the same set of adverse reactions

IC(A1;A2) = log
P(A1,A2)

P(A1)P(A2)
(10)

could tell us if the presence of a drug increases or decreases the interaction between

the adverse reactions. For a drug related syndrome it could then be expected that when

IC(A1,A2;D) = log
P(A1,A2|D)

P(A1,A2)
>> 0 (11)

would IC(A1;A2) << IC(A1;A2|D), but the investigation we have done so far, has,

however, not given us indications about this. We intend to investigate these measures

(9,10) more in the future, but the results we present in this paper are based on the

measure in eq. (11) only, which when combined with the variance measure, eq. (5),

gives us the ability to sort the obtained results on credibility levels for the IC values.

3 Results

The aim with our experiment was to verify that the algorithm could extract a well

known syndrome which is considered drug related. The layer specification for the

BCPNN was to consider the two classes “haloperidol” and “other drug” as inputs and

let the output layer represent a subset of the power set of all adverse reactions (ADRs)

occuring on every report.

The drug “haloperidol” is considered to be the main cause of the Neuroleptic Ma-

lignant Syndrome (NMS) and included in the symptom picture of NMS are the fol-

lowing four ADRs creatine phosphokinase increased, fever, death and hypertonia.

In the setup of this experiment we generated up to the fourth power of ADR com-

binations in the output layer. The criterion used to associate the ADR combination

with the drug haloperiod was the one given by eq. (11).

The weights inside the BCPNN would then implement the following measures

IC(A1;D), IC(A1,A2;D), IC(A1,A2,A3;D) and IC(A1,A2,A3,A4;D), which are re-

ferred to as IC(A∗;D) in the table below. In the analysis step we generated lists of these

different IC values which were then filtered on two different criteria, either IC being

greater than zero or IC−2σ being greater than zero. The latter criterion, IC−2σ > 0,

gives us an approximate credibility level of 97% for the IC to be positive.



ADR-combinations found where drug haloperidol is suspected

ADR #A* #D-A* #IC(A∗;D)> 0 #IC(A∗;D)−2σ > 0 all within

single 2329 623 298 117 91

pair 125791 4952 4458 651 162

triple 496007 6290 6245 256 61

quad 433993 3315 3315 23 0

As could be expected the single term NMS, representing the syndrome, was on

the top of all these lists. In the pairs, triplets and quadruples list NMS was also found

to be strongly associated with some of the other symptoms which are included in the

symptom picture of the selected ADR terms. The reason for this is that the syndrome

is not so strictly defined as being composed of these symptoms only, it is enough

that the patient has a couple of these symptoms to be diagnosed as NMS. We also

found that the selected ADRs were high on all three lists. For the single ADR list

all four reactions were among the highest 91 IC values. For the list with ADR pairs

combinations of these four ADRs plus the syndrom itself were also found among the

highest 162 IC values, and three of these were in the top eight. For the list with triple

ADRs, complete combinations were found within the 61 highest. Of the quadruples

none of them included a complete symptom picture, on the other hand if we look for

the number of terms included in each combination it looks like this:

(3 2 2 2 2 2 3 1 3 2 1 2 3 1 1 3 2 2 1 0 1 1 0), i.e. the part with the highest IC− 2σ

values also contains most of the terms. For the triplets we obtain a similar picture:

(2 2 3 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 0 2 2 2 1 2 1 2 2 1 0 1 0 1 1 2 0 2 2 1 3 2 0 2 1 0 1

1 1 1 1 0 1 2 2 1 1 0 0 1 1 3 1 0 1 0 1 2 0 1 2 1 0 2 1 2 0 1 2 1 1 1 0 1 0 1 1 1 1 2 0 1 0

1 0 2 1 1 1 1 1 1 1 1 2 0 0 1 0 1 1 1 2 0 1 1 1 1 0 1 1 2 0 2 1 0 1 1 2 2 1 1 0 0 1 1 1 1 1

1 1 0 1 0 1 0 2 0 1 1 0 0 0 0 0 1 1 1 1 1 2 1 1 1 0 2 2 0 1 0 2 0 0 2 0 1 1 1 0 0 0 0 1 0 0

1 1 0 2 2 1 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 2 0 1 1

1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1 2 1 1 1)

4 Discussion on Real Valued Dependencies in R12000

This way of serching for discrete value combinations also allows us to further inves-

tigate such variables which have real valued attributes. For each drug reported there

is also an associated amount, which may be used to give further information about

covariances and ranks of the input space. There are about 12000 drugs being reported

and there are about 2 million reports where the amount of the drug taken is filled in

for about half of the drugs being reported. To search for dependencies in a real space

of dimensionality 12000 would be quite a demanding task. However, the dimension-

ality of the space that need to be considered in this problem is smaller as the there is a

limited number of drugs and ADRs which can occur on one single report.

The approach is to adapt a set of Radial Basis Functions (multivaritate gaussians)

to the real valued space using a stochastic EM-algorithm [6],[7] by creating a large

set of low dimensional gaussians representing the density of the subspaces found on

the reports as discrete combinations. Further analysis may then be done on these

gaussians N(µi,Σi) which are parameterized by µi which is the center and Σi is the

covariance matrix for the gaussian density function. The rank of the inverse covariance



matrix gives the dimensionality of the dependency, the non diagonal elements in the

covariance matrix tell about partial covariates or colinearities. Linear and also non

linear dependencies may be found by doing regression analysis on center values µi.

5 Summary

The BCPNN (Bayesian Confidence Propagation Neural Network) has shown to be a

useful tool for data mining large data bases and is used on a regular basis for signalling

of adverse drug reactions. The IC (information component), which is the weight in a

BCPNN, and its variance is an efficient and intutive measure of the strength and sig-

nificance of a dependecy relation, which relates to information theory. Our approach

to use the IC to find interactive discrete varible combinations seems promising but is

being investigated further. The approach to use this kind of discrete feature detection

in combination with multivariate analysis to find dependencies in sparse high dimen-

sional real valued space will also integrate well with the BCPNN methodology.
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