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Abstract

We model a part of a process in pulp to paper production using Bayesian mixture
density networks. A set of parameters measuring pulp quality is predicted from a
set of process values. The values being predicted are results from time consuming
laboratory experiments. In most regression models, like the error backpropagation
network, the output is a real value but in this mixture density model the output is an
approximation of the density function for a response variable conditioned by a certain
explanatory variable value, i.e., fy (y|X = «). This density function gives information
about the confidence interval for the predicted value as well as modality of the density.
Explanatory and response variable spaces are represented by Gaussian RBF:s (Radial
Basis Functions) using the stochastic EM (Ezpectation Mazimization) algorithm for
calculation of positions and variances. These RBF:s or (density functions) model the
a prior: density for each variable space. Bayesian associative connections are used
to generate the response variable a posterior: density when it is conditioned by an
explanatory variable value. We found that this method for function approximation
performs comparably well with the best backpropagation network we could find on
the same pulp and paper data. It is also straight forward to use with just two design
parameters, the number of units which code the explanatory and response variables
respectively.

Introduction

The fundamental problem we look upon here is function approximation from a set of explanatory
(X) and response (Y) variables. The purpose is to model a process, which is assumed to be
determined by these variables. We do not handle any temporal behaviour of the process here.
In the initial phase of this project, which was done in cooperation with STORA Teknik AB, we
used feedforward networks trained with the error backpropagation (BP) algorithm [OL92]. In the
continuation of this project, which was done in cooperation with STFT (Swedish Pulp and Paper
Research Institute) we developed a mixture density model for function approximation [OL94].
Mixture density networks have been used for, e.g. classification of speech segments and satellite
image pixels [Tra93] and classification of globins in protein sequences [Mac94]. Function approxi-
mation has been done by ,e.g. predicting the a posteriori density [Bis94] or using the EM-algorithm
directly [Gha94]. The method of predicting the a posteriori density using a Bayesian associator as
hidden layer has not been much used, as far as we know, but has earlier been suggested by ,e.g.
[HL93a] and [Mac94]. The prediction of the density function for the response value gives a way
to detect ambiguous response values as well as to get a quality measurement of the prediction.
In figure 1 a sketch of the density method we propose here is presented. We use a stochastic
EM-algorithm [Tra91] for the RBF-units and a BCPNN (Bayesian Confidence Propagation Neural
Network), which have earlier been successfully used for pattern completion [LE89] and classification
[HT.93b], to associate an explanatory conditioned density with a response density function.
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Figure 1: An overview of the density method. a: Training phase: We let a set of Gaussian density
functions (w;) model the density of a set of data samples in explanatory (X) and response (Y)
variable spaces. When an X-sample is drawn from the process w; in explanatory space there is a

certain probability P(wq | wi) that a Y-sample is drawn from the process wy in response space. b:
Recall phase: When a certain X-sample is input we get a response probability P(w;|X=1) from each
of the explanatory processes. These probabilities are propagated to the response space and cause the
response variable density to be conditioned by the explanatory value X=z.

A Priori Density Approximation

The a priori density functions for ezplanatory (fx(z)) and response (fy (y)) variables are composed
of component densities w; (1).

f@) = 32 Pl f(ales) = 3 aiple, 0) = [e.g.Gaussian), = 3 Plwi)N (e, piy0?) (1)

i=1 i=1 i=1
Each component 7 is characterized by a set of parameters, which for the Gaussian case would be
a covariance matriz C' or a variance o} for one dimensional or symmetrical densities, a center
value p; and a probability P(w;). These parameters are here estimated by the EM algorithm. We
have a set of N samples {21,...,2,} which is drawn from a mixture, f(z), of n density functions
(1). By applying Bayes rule about conditioned probability on the density functions we get an
expression for the probability that a certain X-value z was generated from the component w; (2).
Then search the parameters o; and 6; which maximizes the log-likelihood (L) of the samples under
the constraint that the probabilites a; sum to 1, which can be solved by using the Lagragange
multiplier method.
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If we assume Gaussian component densities we get expressions for estimates of the center values
#; and covariance matrices C; (3) as a set of non linear equations which can be solved numerially.
(Cj is the covariance matrix for component ¢ and d is the number of dimensions for the variable)
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A stochastic variant of the EM-algorithm [Tra91], has been used here. Both p; and o? for N
samples of a form which can be rewritten into a recursive expression (4)
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and simplified (5), where the stepsize 5 causes a competitive update among the units. To get a

smooth start we scale down the step further by 6.
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The denominator for  (5) can be replaced with a moving average, caring mostly for the L most
recent samples Dyy1 = (1 — 1/L)Dy + P(w|zy41). To further simplify things we may assume
symmetric density functions, then we don’t need the covariance matrix. In the final incremental
update expressions for center value (6) and variance (8) we use an intermediate estimate of the
next value. For the center value (6) this is just the next sample and for the variance (7) it is the
squared distance over the number of dimensions.

UN+1 = HN +0n41(Engr — pN) (6)
0% = (evpr —pn) (@Ne —pn)/d (7)
oy = X Fver(0k — k) (8)

This is an “almost” parameterfree algorithm. It needs an initial placement p; and variance o}
for the units but none is “critical”. It is a good strategy to start update the variances when the
positions have somewhat begun to stabilize. As an example we can, in figure 2, see how a set of
40 RBF':s have adapted to 676 data points forming a square. There is also an example with two
variable of pulp data in the same figure. In the aspect of function approximation we will get a high
resolution where there is a lot of samples. The placement of the pdfis is not necessarily unique,
there may exist several solutions which maximize the likelihood (2).

—u 41 -i 600 —pc 100 —d sq41 -D 0.3 square.dat
Iter=600

ﬁ{e}*}pc 1fib-free.dat -D 0.0 +r -d fv40.1.0 =i 200 -pc 2 fib-free.dat -vs 30 -1 fv40.1.70 -d fv40.1.300 -D 0.2

bler:270

Figure 2: Left: 41 units are adapted to a square distribution. We see the RBF units with their o
plotted as circles and the data samples as dots. a: 40 units randomly initialized within. b: After
about 200 iterations the units had become stable in this case.



A Posteriori Density Generation

After having found a model of the a prior: density function of a variable we want to find the
a posteriort density function, fy(y | X = z), for a response variable conditioned by a certain
explanatory variable value. We index the explanatory density components with ¢ and response
density components with q.
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By applying Bayes rule [p(q|i) = p(q)p(ilq)/p(7)] to a component density we get an expression
for the probability of an X-value being generated from the component w;, where we can look
upon f(z) as a proportionality factor for a certain X-value and thus, use normalization over all
component probabilities for a certain X (10).
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Then we want to to express the response variable density conditioned by a certain X-value
(fy (y|X=1)) as a relation between component densities of explanatory variables (w;) and response
variables (wy) (9). We start by rewriting the probability of a response variable component density
(9) being conditioned by an explanatory variable value.
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We then write the probability for a response variable density component conditioned by an
explanatory variable value as a probability relation between explanatory and response components
and explanatory component probabilities conditioned by the same explanatory value.

The probabilities for w, will only depend on the X-value through the probabilities for w;. When
the P(w;|X=z) are “almost” mutually exclusive we can use “theorem about total probability” (12)
and thereafter Bayes rule (13). The definition of conditioned probability [p(bla) = p(anb)/p(a))]
under the assumption that w, and w; are independent gives the expression (14).
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We can now combine (11) and (14) to get the expression for fy (y|X==2) (15). As was stated in
(10) the P(w;|X==) is just a version of P(w;)f(X=2|w;) scaled so that their sum is normalized to
1. The component density f(z|w;) may be the normal distribution density function N(z, p;, o).
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The expression which is marked Wj, is similar to the expression which is used for weight cal-
culation in a one layer Bayesian network for binary pattern recognition [LLE89]. Finally we want



a predicted value as output. To get this we calculate the expectation value of the response value
density function, which can be done by integrating the density function (16) to give “a center of
mass”. In the case with, for instance, Gaussian component densities we need not do an integration
for this. Tt is enough to just sum the center values p, weighted by their probabilities (17). We also
want some measure of the prediction quality. By integrating (18) the density function we estimate
a confidence interval (19) for the prediction.
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Response Value Prediction

For response value error calculations we use the standard deviation n S b 2
for the difference between actual and desired output as a percentage Z (6 — " )
of the used value range (0...1). & = Yout — Ydesired Oerr = \| =4 p—

In figure 3, we see an example on how the function y = 0.5 sin 102z is approximated with 60 explana-
tory units and 40 response being trained with 960 samples. We added some normal distributed
noise with a standard deviation of 0.07 around the nominal function value. In figure 4, where we
used 150 samples for the training set and 50 samples for the test set, we see how the peformance
on training and test set respectively on the same problem as above varies when the number of
explanatory and response units are varied.
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Figure 3: Left: Training data consisting of 960 samples with a normal distributed noise (o = 0.07).
Right: Recalled y-value from 320 samples with a network using 60 explanatory units and 40 response
units. The error bars show one estimated standard deviation.
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Figure 4: The performance for training set (left) and test set (right) when we vary the number of
units in explanatory (X) and response (Y) layers. On the x-axis is the number of explanatory units.
The Y units are shown by different curves in the same diagram.



Actually this mixture density method is symmetrical for predictions X — Y and ¥ — X,
which is illustrated in figure 5 where we first recall Y from X, in the normal way, and then X from
Y. As the function y = sin(z) is not bijective the inverse mapping is multi valued which results in
a multi modal density function.

In figure 6 we see how the estimation of expectation values and the confidence intervals
improves as the number of samples increases for the example above. This is shown with reg-
ularization, described below, for the test set and without regularization for the training set.
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25 10 T
a 1 ‘ytrainlf 88e0.re3 —— "xtest1.0.60-80.dty’ —~— 9 "xtest1.1.60-80.dty' ——

Y(x) 20 C 8
.8 0.5 7
0.6 15 6
i 5
04 / \ 10 4
3 3
02/ 5 2
0 K 1
. . . . . 0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 5: a: A recalled sine function as Y={f(X). b: Recalled density for X when input on Y is 0.5
(arcsin(Y)). ¢t Same as b when Y input is 1.
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Figure 6: Left: The prediction performance of the expectation value improves for a specific network
when the number of samples used for training increases. In this case we could perform better on
the test set with regularization than on the training set without regularization most of the time.
Right: The confidence interval estimation improvement as the number of samples increases. The two
upper curves “TRAIN” and “TEST” show the gcrr. “TRAIN-MERR” and “TEST-MERR” show

the average error. The confidence intervals for test set were calculated after regularization.

Regularization

One way to improve the generalization performance when the RBF-model has been trained with
too few examples is to increase the “fuzziness” in the system by scaling up the variances. The
sample will be classified as possibly being generated from several close PDF':s instead of just the
few closest ones. A method which has proven useful is to increase the variances until the distance
between the input sample vector and the expectation value of the PDF:s which represent this value
is minimized, figure 7.
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Figure 7: Left: Dynamic regularization by adapting the explanatory sample “fitness” by scaling the
variances, thus improving the generalization capability. Right: Representation error vs. variance
scaling (golden search used as distance minimizer).



In table 1 we see two laboratory measured pulp response variables tear, and tensile being
predicted from six explanatory variables. We see how the prediction performance varies when the
number of units in explanatory and response layer is increased from 10 to 80. The data set was
randomly partitioned into 75 % training and 25 % test data. As a comparision the best BP results
obtained on test set earlier [01.92] was 11.7 % for tear and 10.8 % for tensile. This indicates that
the mixture density method performs equally well as BP considering the predicted value.

In figure 8 we see diagrams for the predictions of tear and fensile tensile on a test set. Here are
also an estimation of a 67 % confidence interval for the prediction shown as error bars.

tear tensile
TRAIN TEST TRAIN TEST
size Terr size Oerr size Oerr size Cerr
80-80 | 8.01 40-10 | 11.86 80-20 | 7.77 20-80 | 9.89
80-10 8.43 40-20 | 13.81 80-80 8.09 20-40 9.90
80-20 8.51 20-10 | 15.29 40-20 8.22 20-20 | 10.09
80-40 8.94 40-80 | 15.34 80-40 8.56 20-10 | 12.02
40-40 | 9.33 20-40 | 15.63 40-80 | 9.13 10-10 | 12.94
40-20 9.70 10-80 | 16.56 80-10 9.20 40-80 | 13.09
40-10 9.91 40-40 | 18.02 40-40 9.28 10-80 | 13.59
40-80 | 10.21 || 20-80 | 18.06 40-10 | 9.53 40-40 | 14.78
20-20 | 10.45 10-10 | 18.10 20-10 9.73 10-40 | 14.82
20-10 | 11.56 80-20 | 18.45 20-80 | 10.38 40-20 | 15.47
20-80 | 11.75 80-10 | 18.47 20-40 | 10.47 80-40 | 15.74
20-40 | 11.83 10-40 | 18.55 20-20 | 10.51 40-10 | 15.88
10-20 | 15.15 20-20 | 18.80 10-20 | 11.69 10-20 | 16.98
10-10 | 15.83 80-80 | 18.88 10-80 | 12.50 80-20 | 17.81
10-40 | 15.99 || 10-20 | 20.31 10-40 | 12.56 || 80-10 | 21.75
10-80 | 16.86 || 80-40 | 20.98 10-10 | 13.46 || 80-80 | 23.00

Table 1: Prediction performance for tear and tensile for different
sizes of explanatory and response layer.

Prediction test tear Err = 14.2 % Prediction test tensile Err = 11.5 %
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Figure 8: Two test sets with prediction outputs for tear and tensile with estimated 67% confidence
intervals (one standard deviation) plotted as error bars. The predicted values are marked with <:s
(with bars) and the process output values are marked with +:s. In some cases like sample 9 for tear
and sample 5 for fensile we see a large confidence interval estimation due to the input vector being

far from all the RBF units.



Discussion

Advantages of using the mixture density model, compared with e.g. using MLP with BP are
the following: 1) The RBF representations of variable spaces are built unsupervised, which is
why expensive labeled examples are not needed at that moment. 2) The generalization, can
be dynamically improved due to the regularization capabilities of the RBF:s which decrease the
requirement of cross validation. 3) Design of the network is almost parameter free as the relation
between number of training examples and preferred maximum number of RBF:s is relatively simple.
4) The supervised training part can be done as a one shot quick process. 5) The predicted mixture
density for response variables gives, besides the ability to estimate a confidence interval, also the
ability to detect ambiguous output values, which will show up as a multimodal density function.
6) A missing value in an input sample vector is still useable as this only leads to a less specific
conditioned a prior: density in the missing dimension.
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