A Bayesian Network
for Temporal Segmentation

Roland Orre and Anders Lansner

SANS, Dept. of Numerical Analysis and Computing Science
Royal Institute of Technology, S—100 44 Stockholm, Sweden
E-mail: orre@sans.kth.se, FAX: +46-8-790 09 30

Abstract

A recurrent network which segments an unlabeled externally timed sequence of data is
presented. The proposed method uses a Bayesian learning scheme earlier investigated,
where the relaxation scheme is modified with a few extra parameters, a pairwise correlation
threshold and a pairwise conditional probability threshold. The method studied is able
to find start and end positions of words which are in an unlabeled continuous stream of
characters. The robustness against noise during both learning and recall is studied.

1 INTRODUCTION

The segmentation problem is fundamental in pattern recognition. Given data with a se-
quential/temporal behaviour this shows up as the temporal chunking problem [1] which may
be illustrated by the example:
thisisacontinuousstreamofdatathatispossibletoreadwithoutseparators

Here, we want unfamiliar lists of familiar items (characters) presented sequentially to be
recognized as new items (words). In the first place just the characters are familiar. When
we have seen different lists several times we will also recognize the words as familiar items.
The method presented here detects segmentation points between words. Conceptually this
means that we have grouped a sequence of elementary items into a new, composite item.

2 METHODS

2.1 Learning and Recall

The learning rule used for the ANN was earlier investigated [2]. The network can be
characterized as a recurrent Hopfield type with graded output units. Weights, biases (1)
and the transfer function (4) for the units are derived from Bayes’ rule.

By = logp(i (1)
_ p(ilg) . ple&i) . Pgi _
wy = logf R —log s —log e (@) s =Auk Y v ()

The neurons sum their inputs as in (3) where s, is the support of the receiving unit g,
Whq is the weight from unit h, (in the set of active units A) to unit ¢, B, is the bias and
mp, is the output from h. The relaxation process is performed as a statistical inference
where explicit time is simulated by letting a dynamic support E; being charged as a “leaky
integrator” of the support s;. An output value 7, is a hypothesis of p(¢|A) and is obtained
by exponentiating the dynamic support E; as is shown in (4). Here we have calculated the
weight values as in (5).

1 E;>0 0 Pi <pvVpg <pv
- —log C, iq <
" { o MSESO @ wa=y T il < ®)
0 E < . g o
2 <Pa gpi’;q otherwise

The threshold p, in (5) acts as a noise limiter and has been set to a low constant value.
The py is a limit for correlations between units. A high py causes uncommon patterns to
be forgotten while p, is more independent of how frequent a certain pattern segment is. Cy
and C, are some large numbers that are characteristic for the network size and the number
of patterns stored. They are not critical but should typically be set so ViVq : (% < ﬁ) to
make the inhibition a monotonic function of the correlations.

2.2 Temporal Coding

The architecture used to map sequential information onto the recurrent network is illus-
trated in figure 1. The information is learned at every position. This is like a kind of
translation invariant storage of the sequence.

2.3 Usage

One possibly way to use the detection of segmentation points (starts and ends) is illustrated
by figure 2. The output from the segmentation algorithm can be used as a “print now”
signal to a network that stores or recognizes each word at a fixed position.

2.4 Segmentation Principle

Assume that each temporal position, as in figure 1 is represented by a neural population,
where each letter is coded with one unit. Further assume that the segmentation network has
seen a noise free sequence like “NEURALJUNIORNEURALEXPERTNEURAL”. The sequence consists
of n words, in this case of equal length [, where the most frequent word occurs at least ¢
times. These words are seen by the network in all positions. The following calculations
depend on how the first and last word are treated. We assume here that a frequent word
starts and stops a sequence. The probability for a unit to be active is, p¥ > (I(n — 1) +1)7!
i.e. , a character has occurred at least once in a unique word and p¢ > ¢(i(n —1) +1)"" or
¢ times in a frequent word. The pairwise unit correlation p;q, is (I(n — 1) + 1)"! within a
unique word and ¢(I(n — 1) + 1)~ within a frequent word. To detect words that occur more
frequently than their combinations we could use p§ > ¢(l(n — 1) + 1)1, If we also want to
detect infrequent words combined with frequent words we could threshold the normalized
correlation p(i|q), as is expressed by p,. p(i¢|q°) ~ % ~ 1 and p(i¥|q¥) ~ % ~ 1 while

2

p(i%¢°) =~ g—é‘ ~ 1. By setting the p, > L in (5) we could make weights between units in
frequent, and in infrequent, patterns inhibitory. When all words are about equally frequent

we could set p, just above the greatest pairwise correlation between words. For n equally

frequent words this implies that lim re: _, ps = —5.
PiPq

storage/perception
network

L E[T[T[E[RIC[HJUN K S

T E R[C[H[UN[KS|D A T
segmentation network vy yvvy

"print now" -
segmentation network
Figure 1: A continuous stream of data passes a Figure 2: The segmentation network may signal
tapped delay line that spreads the temporal in- “print now” to the actual storage or perception
formation spatially over the network. network when a segment start is found.

2.5 Segmentation Algorithm

A segmentation hypothesis S, (6), where 7 is an index of the neural population that codes
a character at a specific time-step, is propagated in parallel with the input sequence. St
(8) is a sum of all S-. A decision about segmentation is done based on the current value of
St and a decision threshold & (9). S; is based upon population activities A, close around
each hypothesis point 7 (6). A, is a normalized sum of the activity in population 7 (7)
where n(7) is the number of units in this neural population.

Segnent ation, no threshol di ng
0 7=0 ‘ s
' Shits ——
5 = A Arp1 <A1 —¢€ 6) 100 | Rg:ml h:tE: e
T —A; A > A +¢ ormL S e -
0 otherwise _ 8oy
3
1 n(r) ‘g 6ot y
A= — ™ 7 T
= (7) /
i=1 7
20 3
1 s : 78
ST = Z ST (8) 0 0 1
7=T-1 sequences | earned
BEGIN > .
SEG=? E N% gT < ¢ 9 Figure 3: Random combinations of 17 words are
- T = _,é (9) learned and segmented. Upper curves show correct
NO otherwise

hits and lower show spurious hits.

3 EXAMPLE

Learn the sequences “NEURALJUNIOR”, “NEURALEXPERT”, “BAKERJUNIOR” and “BAKEREXPERT”
on a network with six character populations as in figure 1. Each of the words “NEURAL”,
“JUNIOR”, “EXPERT” and “BAKER” is twice as frequent as any of the combinations. Each
sequence is learned at every position on the network. Biases and weights are calculated
according to (1) and (5) and a relaxation is done for each position when the sequence is
presented. In the following example a “_” means low output activity and a “+” stands for
an ambiguous output hypothesis. To begin with we let the pg have a low value. We start by
stimulating the network as in #1 below. For each time-step the network sees a 6 character
long part of the sequence. After each stimulation in #1 we do a relaxation of the network
and get outputs like in #2. We now do the same but before adjust py to a higher value,
like py = 0.05. We will then, after each relaxation, get the outputs in #3.

The segmentation algorithm looks at the ac-
tivity difference between adjacent popula-
tions. In example #3 it receives a strong
indication for “R” in “ER_” to be an ending
and “E” in “_EX” to be a start.

ex t0 t1 t2 t3

#1 | BAKERE | AKEREX | KEREXP | EREXPE
#2 | BAKERJ | AKEREX | KEREXP | EREXPE
#3 | BAKER_ | AKER__ _EXP | __EXPE

4 RESULTS

These experiments have been done by forming sequences of words picked from an English
dictionary. Every next word in a sequence has been randomly selected with a certain
probability. In figure 3 it is shown how the algorithm performs on a network tuned for
pattern completion. The network learns an increasing amount of random sequences for a
set of 17 words.

Segmentation performance, versus py-level for noise free data, when just a few sequences
are learned, is illustrated in figure 4. In figure 5 we see how the p,-level affects the per-
formance. When varying the p,-level we could not reach the same performance as when
varying the pg-level. When the pgy was set to the optimal level the performance could not be
improved, only decreased, by adjusting p,. This was also the case when some words were
15 times more frequent than the least common words. This would indicate that ps could
be used for good segmentation performance but not p,.

One way to do segmentation using a recurrent network is to look at the distance between
the stimulus pattern and the resulting pattern after relaxation. In figure 6 we compare the
segmentation on noise free data with the ideal case where the words are learned at a fix
position (f13) versus all positions (al3). In the former case the words were learned until no
further improvement in segmentation could be achieved. The words were in this case of the
same length as the network.

In figure 7 we see how the segmentation quantitatively depends on py when we have noise
in the learning data. A noise level of 0.4 means that the probability p(wrong character) =
0.4 during stimulation for each population.

Seg, iter=30, th_p(i|j)=0.008 Seg, iter=30, th_p(i&j)=0.001
100 T T

T 100
] h "thr9c. hitS —— "throd. hitS ——
"thr9c. hitE -+ "throd. hitE -+
80 . 'thr9c.spurS -a- 80 | "throd. spurS e 4
L "thr9c.spurE -x N "throd. spurg -x
/ T
5 60 1 5]
5 5
5 5
$ 40 i 8 |
20 4 4
0
0. 001 0.01 0.1 0.01 0.1
th_p(i&) th_p(ilj)
Figure 4: The segmentation performance depen- Figure 5: The segmentation performance depen-
dency on the pg-level. dency on the p,-level.
Noi se Free Learn, Fix Pos and Al Pos Noi se Learn level =0.4, Al Pos
100 "f13.hitS —— | " pij-high. 1
f130hitE e Tpij-
'al3. hitsS -e-) -
"al3. hitE x| i
80 "al3.spurS -a--
- o %! f13.spurS -x-- -
o ... o
@ 60 : 1] 1
5 5
£ 40] 8]
20 4 4
. S
0 ! . , ! ! ’
0 0.1 0.2 0.3 0.4 05 06 0.7 0 0.1 0.2 0.3 0.4 05 06 0.7
recal | noise recal | noise

Figure 6: Segmentation when 13 words are Figure 7: The performance of segmentation for
learned at a fix position (f13) compared with when three different pg-levels when there is noise (prob
they are learned at all positions (al3). 0.4) in the training data.

References

[1] Grossberg, S. Unitization, automaticity, temporal order and word recognition. Cognition and
Brain Theory, 7:263-283, 1984.

[2] Lansner, A. and Ekeberg, O. A one-layer feedback, artificial neural network with a bayesian
learning rule. Int. J. Neural Systems, 1(1):77-87, 1989. Also extended abstract in Proceedings
from the Nordic symposium on Neural Computing, April 17-18, Hanasaari Culture Center,
Espoo, Finland.

[3] Schmiduber, J. Neural sequence chunkers. Tech. Rep. FKI-148-91, Institut fiir Informatik,
Technische Universitdt Miinchen, 1991.

[4] Doutriaux, A. and Zipser, D. Unsupervised discovery of speech segments using recurrent net-
works. In Touretzky, D., Elman, J., Sejnowski, T., and Hinton, G., editors, Proceedings of the
1990 Connectionist Models Summer School, pages 52-61. Morgan Kaufmann, San Mateo, 1990.

[6] Lansner, A. A recurrent bayesian ann capable of extracting prototypes from unlabeled and
noisy examples. In Artificial Neural Networks, Proceedings ICANN-91, pages 247-254. Royal
Institute of Technology, Stockholm, Sweden, 1991.

