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Abstract
We model a part of a process in pulp to paper production using Bayesian mixture
density networks. A set of parameters measuring paper quality is predicted from a set
of process values. In most regression models, the response output is a real value but in
this mixture density model the output is an approximation of the density function for
a response variable conditioned by an explanatory variable value, i.e., fY (y|X = x).
This density function gives information about the confidence interval for the predicted
value as well as modality of the density. The representation is Gaussian RBFs (Radial
Basis Functions), which model the a priori density for each variable space, using the
stochastic EM (Expectation Maximization) algorithm for calculation of positions and
variances. Bayesian associative connections are used to generate the response variable
a posteriori density. We found that this method, with only two design parameters,
performs comparably well with backpropagation on the same data.

keywords mixture density neural network function approximation

Introduction

The fundamental problem we look upon here is function approximation from a set of explanatory
(X) and response (Y) variables. The purpose is to model a process, which is assumed to be deter-
mined by these variables. We do not handle any temporal behaviour of the process here. In the
initial phase of this project, which was done in cooperation with STORA Teknik AB, we used feed-
forward networks trained with the error backpropagation (BP) algorithm [Orre and Lansner, 1992].
In the continuation of this project, which was done in cooperation with STFI (Swedish Pulp
and Paper Research Institute) we developed a mixture density model for function approximation
[Orre and Lansner, 1994].

Mixture density networks have been used for, e.g. classification of speech segments and satel-
lite image pixels [Tr̊avén, 1993] and classification of globins in protein sequences [MacKay, 1994].
Function approximation has been done by, e.g. predicting the a posteriori density [Bishop, 1994]
or using the EM-algorithm directly [Ghahramani, 1994]. The method of predicting the a poste-
riori density using a Bayesian associator as hidden layer has not been much used, as far as we
know, but has earlier been suggested by, e.g. [Holst and Lansner, 1993a] and [MacKay, 1994]. The
prediction of the density function for the response value gives a way to detect ambiguous response
values as well as to get a quality measurement of the prediction. In figure 1 a sketch of the density
method we propose here is presented. We use a stochastic EM-algorithm [Tr̊avén, 1991] for the
RBF-units and a BCPNN (Bayesian Confidence Propagation Neural Network), which have earlier
been successfully used for pattern completion [Lansner and Örjan Ekeberg, 1989] and classifica-
tion [Holst and Lansner, 1993b], to associate an explanatory conditioned density with a response
density function.
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Figure 1: An overview of the density method. a: Training phase: We let a set of Gaussian density
functions (ωi) model the density of a set of data samples in explanatory (X) and response (Y)
variable spaces. When an X-sample is drawn from the process ωi in explanatory space there is a
certain probability P (ωq | ωi) that a Y-sample is drawn from the process ωq in response space. b:

Recall phase: When a certain X-sample is input we get a response probability P (ωi|X=x) from each
of the explanatory processes. These probabilities are propagated to the response space and cause the
response variable density to be conditioned by the explanatory value X=x.

Data and Experiment Setup

The data we have been working with here is a set of process input parameters being automatically
measured and a set of process outputs being manually measured in lab. In table 1 are the names
and ranges for these variables listed. There are three different pulp types where the input variables
%pulp type1, %pulp type2 and %pulp type3 are percentages of their contents in the pulp mix. There
are two fiber length classes % middle and % long were the measure is percentage of the length
class versus other fiber length classes. The drain-time is a measure of how long time it takes for
standardized piece of pulp to drain. The drain-speed is a measure of how quick the water flows out
of the pulp. The variables %medium, %long, drain speed and drain time are being automatically
measured with an interval of about one hour. The manually measured output values (y) being
predicted, here tear and tensile, are measured by lab experiments about once a day.

In figure 2 we see the experimental setup used for prediction of these outputs. The pulp types
and fiber classes are fed to the input layer. From the first hidden layer with RBFs we get the
probabilities P (ωi|X = x), i.e. probabilities for the x-values to belong to one of the “classes” ωi.
The weights (P (ωq|ωi) between the hidden RBF layer and the density output layer associates a
class ωi in the input layer with a class ωq in the output layer. A summation in the density output
units gives the probabilities P (ωq|X = x), which is the probability for a certain density function
ωq to be the generating response process when a certain explanatory sample value x is fed into the
input layer.

The output (y) is calculated as the center of mass for the active output densities. To be able
to estimate a confidence interval for this output there is also an integration (formula 15) being
performed, which is not shown in figure 2. In the following two chapters is a brief theoretical
description of the a priori and a posteriori density estimations given.
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Figure 2: Setup of experiment. At left we input the process parameters, at right we output the
response variable (e.g. y=tear or y=tensile) value. The input units just distribute the explanatory
values to all hidden RBFs. Outputs from the hidden RBF units are P (ωi|X = x), i.e. probability
that value x belongs to class ωi. The weight values between the hidden RBFs and the density output

layer are P (ωq|ωi) =
P (ωi&ωq)

P (ωi)P (ωq)
. For a formal description see (15) .

parameter range
% pulp-type1 0 · · · 100
% pulp-type2 0 · · · 100
% pulp-type3 0 · · · 100
% middle 22.2 · · · 30.9
% long 51 · · · 75
drain-time 29.2 · · · 45.9
drain-speed 255 · · · 367
tear 11.6 · · · 16.5
tensile 60.8 · · · 84.7

Table 1: The set of variables used listed with their
active ranges. The ones above the line are inputs,
i.e. explanatory variables. The response variables
tear and tensile below the line are the ones being
predicted.
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A Priori Density Approximation

The a priori density functions for explanatory (fX(x)) and response (fY (y)) variables are composed
of component densities ωi (1).

f(x) =

n∑

i=1

P (ωi)f(x|ωi) =

n∑

i=1

αiϕ(x, θi) = [e.g.Gaussian],=

n∑

i=1

P (ωi)N(x, µi, σ
2
i ) (1)

Each component i is characterized by a set of parameters, which for the Gaussian case would be a
covariance matrix C or a variance σ2

i for one dimensional or symmetrical densities, a center value
µi and a probability P (ωi). These parameters are here estimated by the EM algorithm. We have a
set of N samples {x1, . . . , xn} which is drawn from a mixture, f(x), of n density functions (1). By
applying Bayes rule about conditioned probability on the density functions we get an expression
for the probability that a certain X-value x was generated from the component ωi (2). Then
search the parameters αi and θi which maximizes the log-likelihood (L) of the samples under the
constraint that the probabilities αi sum to 1, which can be solved by using the Lagrange multiplier
method.

P (ωi|x) =
P (ωi)P (x|ωi)

P (x)
=

αiϕ(x, θi)
∑n

j=1 αiϕ(x, θi)
, logL =

N∑

k=1

log f(xk), (2)

If we assume Gaussian component densities we get expressions for estimates of the center values
µi and covariance matrices Ci (3) as a set of non linear equations which can be solved numerically.
(Ci is the covariance matrix for component i and d is the number of dimensions for the variable)

µ̂i =

∑N

k=1 P̂ (ωi|xk)xk
∑N

k=1 P̂ (ωi|xk)
, Ĉi =

∑N

k=1 P̂ (ωi|xk)(xk − µi)(xk − µi)
T

∑N

k=1 P̂ (ωi|xk)
.

A stochastic variant of the EM-algorithm [Tr̊avén, 1991], has been used here. Both µi and σ2
i

for N samples of a form which can be rewritten into a recursive expression (3)

θN =

∑N

k=1 P (ω|xk)θ(xk)
∑N

k=1 P (ω|xk)

θN+1 =

∑N+1

k=1 P (ω|xk)θ(xk)
∑N+1

k=1 P (ω|xk)
(3)

=
P (ω|xN+1)θ(xN+1) +

∑N

k=1 P (ω|xk)θ(xk)
∑N+1

k=1 P (ω|xk)

=
P (ω|xN+1)θ(xN+1) +

∑N+1

k=1 P (ω|xk)θN − P (ω|xN+1)
∑N+1

k=1 P (ω|xk)
and simplified (4), where the step size η causes a competitive update among the units. To get a
smooth start we scale down the step further by δ.

θN+1 = θN + ηN+1(θ(xN+1)− θN ) , ηN+1 =
P (ω|xN+1)

∑N+1

k=1 P (ω|xk)
δ (4)

The denominator for η (4) can be replaced with a moving average, caring mostly for the L most
recent samples DN+1 = (1 − 1/L)DN + P (ω|xN+1). To further simplify things we may assume
symmetric density functions, then we don’t need the covariance matrix. In the final incremental
update expressions for center value (5) and variance (7) we use an intermediate estimate of the
next value. For the center value (5) this is just the next sample and for the variance (6) it is the
squared distance over the number of dimensions.

µN+1 = µN + ηN+1(xN+1 − µN ) (5)

σ̂2
N+1 = (xN+1 − µN )T (xN+1 − µN )/d (6)

σ2
N+1 = σ2

N + ηN+1(σ̂
2
N+1 − σ2

N ) (7)
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This is an “almost” parameter free algorithm. It needs an initial placement µi and variance σ2
i

for the units but none is “critical”. It is a good strategy to start updating the variances when
the positions have somewhat begun to stabilize. As an example we can, in figure 3, see how a
set of 40 RBFs have adapted to 676 data points forming a square. There is also an example with
two variables of pulp data in the same figure. In the aspect of function approximation we will get
a high resolution where there is a lot of samples. The placement of the PDFs is not necessarily
unique, there may exist several solutions which maximize the likelihood (2).

Figure 3: Left: 41 units are adapted to a square distribution. We see the RBF units with their σ

plotted as circles and the data samples as dots. Middle: 40 units randomly initialized. Right: After
about 200 iterations the units had become stable in this case.

A Posteriori Density Generation

After having found a model of the a priori density function of a variable we want to find the
a posteriori density function, fY (y | X = x), for a response variable conditioned by a certain
explanatory variable value. We index the explanatory density components with i and the response
density components with q.

fX(x) =

n∑

i=1

P (ωi)f(x|ωi), fY (y) =

m∑

q=1

P (ωq)f(y|ωq) (8)

By applying Bayes rule [p(q|i) = p(q)p(i|q)/p(i)] to a component density we get an expression
for the probability of an X-value being generated from the component ωi, where we can look
upon f(x) as a proportionality factor for a certain X-value and thus, use normalization over all
component probabilities for a certain X (9).

P (ωi|x) =
P (ωi)f(x|ωi)

fX(x)
∝ P (ωi)f(x|ωi),

n∑

i=1

P (ωi|X=x) = 1 (9)

Then we want to express the response variable density function conditioned by a certain X-
value (fY (y|X= x)) as a relation between component densities of explanatory variables (ωi) and
response variables (ωq) (8). We start by rewriting the probability of a response variable component
density (8) being conditioned by an explanatory variable value.

fY (y|X=x) =
∑

q

fY (y|ωq)P (ωq|X=x) (10)
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We then write the probability for a response variable density component conditioned by an
explanatory variable value as a probability relation between explanatory and response components
and explanatory component probabilities conditioned by the same explanatory value.

The probabilities for ωq will only depend on the X-value through the probabilities for ωi. When
the P (ωi|X=x) are “almost” mutually exclusive we can use “theorem about total probability” (11)
and thereafter Bayes rule (12). The definition of conditioned probability [p(b|a) = p(a∩b)/p(a))]
under the assumption that ωq and ωi are independent gives the expression (13).

P (ωq|X= x) =

∑

i

P (ωq|ωi)P (ωi|X= x) (11)

=

∑

i

P (ωq)
P (ωi|ωq)

P (ωi)
P (ωi|X= x) (12)

= P (ωq)
∑

i

P (ωq&ωi)

P (ωq)P (ωi)
P (ωi|X= x) (13)

We can now combine (10) and (13) to get the expression for fY (y|X=x) (14). As was stated in
(9) the P (ωi|X=x) is just a version of P (ωi)f(X=x|ωi) scaled so that their sum is normalized to
1. The component density f(x|ωi) may be the normal distribution density function N(x, µi, σ

2
i ).

fY (y|X=x) =
∑

q

fYq
(y|ωq)P (ωq)

∑

i

P (ωq&ωi)

P (ωq)P (ωi)
︸ ︷︷ ︸

Wiq

P (ωi|X=x) (14)

The expression which is markedWiq is similar to the expression which is used for weight calcula-

tion in a one layer Bayesian network for binary pattern recognition [Lansner and Örjan Ekeberg, 1989].
Finally we want a predicted value as output, which is the expectation value of the response value
density function. This can be calculated by integrating the density function (15) to give “a center
of mass”. In the case with, e.g, Gaussian component densities, which were used here, we need not
do an integration for this. We may just sum the center values µq weighted by their probabilities
(16). We also want some measure of the prediction quality. By integrating (17) the density function
we may estimate a confidence interval (18) for the prediction.

E(y|X=x) =

∫

fY (y|X=x) y dy (15)

E(y|X=x) =
∑

q

P (ωq|X=x)µq (16)

FY (γ) =

∫ γ

−∞

fY (y|X=x) dy (17)

0.025 < FY (y1)
0.975 > FY (y2)

}

⇒ y1 ≤ Y95% ≤ y2 (18)

Response Value Prediction

For response value error calculations we use the standard deviation
for the difference between actual and desired output as a percentage
of the used value range (0 . . . 1). δi = yout − ydesired σerr =

√

√

√

√

√

n
∑

i=1

(δi −

∑n

i=1 δi

n
)
2

n−1

In figure 4, we see an example on how the function y = 0.5 sin 10x is approximated with 60 explana-
tory units and 40 response being trained with 960 samples. We added some normal distributed
noise with a standard deviation of 0.07 around the nominal function value. In figure 5, where we
used 150 samples for the training set and 50 samples for the test set, we see how the performance
on training and test set respectively on the same problem as above varies when the number of
explanatory and response units are varied.
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Figure 4: Left: Training data consisting of 960 samples with a normal distributed noise (σ = 0.07).
Right: Recalled y-value from 320 samples with a network using 60 explanatory units and 40 response
units. The error bars show one predicted standard deviation.
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Figure 5: The performance for training set (left) and test set (right) when we vary the number of
units in explanatory (X) and response (Y) layers. On the x-axis is the number of explanatory units.
The Y units are shown by different curves in the same diagram.

This mixture density method is actually symmetrical for predictions X → Y and Y → X,
which is illustrated in figure 6 where we first recall Y from X, in the normal way, and then X from
Y. As the function y = sin(x) is not bijective the inverse mapping is multi valued which results in
a multi modal density function.

In figure 7 we see how the estimation of expectation values and the confidence intervals improves
as the number of samples increases for the example above. This is shown with regularization,
described below, for the test set and without regularization for the training set.
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Figure 7: Left: The prediction performance of the expectation value improves for a specific network
when the number of samples used for training increases. In this case we could perform better on
the test set with regularization than on the training set without regularization most of the time.
Right: The confidence interval estimation improvement as the number of samples increases. The
two upper curves “TRAIN” and “TEST” show the σerr. “TRAIN-MERR” and “TEST-MERR” show
the average error. The confidence intervals for test set were calculated after regularization.

Regularization, a Way to Improve Generalization

One way to improve the generalization performance when the RBF-model has been trained with a
sample set which is too small or whose density is not representative for the whole set is to increase
the “fuzziness” in the system by scaling up the variances. The sample will then be classified as
possibly being generated from several close PDFs instead of just the few closest ones. A method
which has proven useful is to increase the variances until the distance between the input sample
vector and the expectation value of the PDFs which represent this value is minimized, figure 8.

Results: Predictions of tear and tensile

In figure 9 we see a pair of diagrams for the predictions of the two laboratory measured pulp
response variables tear and tensile on a test set. Here is also an estimation of a 67 % confi-
dence interval for the predicted values shown as error bars. Considering these intervals they
are reasonable sized as they have about the same size as the measurement errors of the vari-
ables [Orre and Lansner, 1992]. In some cases, like sample 9 for tear and sample 5 for tensile we
may get a very large confidence interval due to the fact that the test sample value is far from any
RBF center, thus activating most units resulting in a predicted value close to the expectation value
of the a priori density for the response variable.
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Figure 8: Left: Dynamic regularization by adapting the explanatory sample “fitness” by scaling the
variances, thus improving the generalization capability. Right: Representation error vs. variance
scaling (golden search used as distance minimizer).
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In table 2 and table 3 we see tear, and tensile predicted from the six explanatory variables shown in
table 1. Table 2 shows the performance on training sets and table 3 shows the performance on test
sets. We can see how the prediction performance varies when the number of units in explanatory
and response layer is increased from 10 to 80. The data sets in these tests was randomly partitioned
into 75 % training and 25 % test data.

As a comparison with the results in tables (2 3) the best BP results obtained on test sets for
these variables earlier [Orre and Lansner, 1992] (search through many architectures) was 11.7 %
for tear and 10.8 % for tensile. This indicates that this mixture density method performs equally
well as BP considering the predicted values when the optimal architecture for a certain data set is
used.
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Figure 9: Two test sets with prediction outputs for tear and tensile with estimated 67% confidence
intervals (one standard deviation) plotted as error bars. The predicted values are marked with ⋄:s
(with bars) and the process output values are marked with +:s. In some cases like sample 9 for tear
and sample 5 for tensile we see a large confidence interval estimation due to the input vector being
far from all the RBF units.
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tear-TRAIN
size σerr

80-80 8.01
80-10 8.43
80-20 8.51
80-40 8.94
40-40 9.33
40-20 9.70
40-10 9.91
40-80 10.21
20-20 10.45
20-10 11.56
20-80 11.75
20-40 11.83
10-20 15.15
10-10 15.83
10-40 15.99
10-80 16.86

tensile-TRAIN
size σerr

80-20 7.77
80-80 8.09
40-20 8.22
80-40 8.56
40-80 9.13
80-10 9.20
40-40 9.28
40-10 9.53
20-10 9.73
20-80 10.38
20-40 10.47
20-20 10.51
10-20 11.69
10-80 12.50
10-40 12.56
10-10 13.46

Table 2: Prediction performance on training

data for tear and tensile for different sizes of

explanatory and response layer, sorted by per-

formance. A size “80-10” means 80 input RBFs

and 10 output RBFs.

tear-TEST
size σerr

40-10 11.86
40-20 13.81
20-10 15.29
40-80 15.34
20-40 15.63
10-80 16.56
40-40 18.02
20-80 18.06
10-10 18.10
80-20 18.45
80-10 18.47
10-40 18.55
20-20 18.80
80-80 18.88
10-20 20.31
80-40 20.98

tensile-TEST
size σerr

20-80 9.89
20-40 9.90
20-20 10.09
20-10 12.02
10-10 12.94
40-80 13.09
10-80 13.59
40-40 14.78
10-40 14.82
40-20 15.47
80-40 15.74
40-10 15.88
10-20 16.98
80-20 17.81
80-10 21.75
80-80 23.00

Table 3: Prediction performance on test data

for tear and tensile. The best test result using

BP we obtained earlier was 11.7% for tear (two

hidden layers with 10 units in each) and 10.8%

for tensile (same configuration).

Discussion

Advantages of using the mixture density model, compared with e.g. using MLP with BP are
the following: 1) The RBF representations of variable spaces are built un-supervised, which is
why expensive labeled examples are not needed at that moment. 2) The generalization can be
dynamically improved due to the regularization capabilities of the RBFs, which decreases the
requirement of cross validation. 3) The design (selection of architecture) of the network is rather
easy and need not be done in a supervised way as the number of RBF units relates to the density
and representation of the variable in each space. 4) The supervised training part can be done
as a one shot quick process as this is just to collect statistics. 5) The predicted mixture density
for response variables gives, besides the ability to estimate a confidence interval, also the ability
to detect ambiguous output values, which will show up as a multi modal density function. 6) A
missing value in an input sample vector is still usable as this only leads to a less specific conditioned
a priori density in the missing dimension.
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